Range dynamics causes mismatches between a species’ geographical distribution and the set of suitable environments in which population growth is positive (the Hutchinsonian niche). This is because source–sink population dynamics cause species to occupy unsuitable environments, and because environmental change creates non‐equilibrium situations in which species may be absent from suitable environments (due to migration limitation) or present in unsuitable environments that were previously suitable (due to time‐delayed extinction). Because correlative species distribution models do not account for these processes, they are likely to produce biased niche estimates and biased forecasts of future range dynamics. Recently developed dynamic range models (DRMs) overcome this problem: they statistically estimate both range dynamics and the underlying environmental response of demographic rates from species distribution data. This process‐based statistical approach qualitatively advances biogeographical analyses. Yet, the application of DRMs to a broad range of species and study systems requires substantial research efforts in statistical modelling, empirical data collection and ecological theory. Here we review current and potential contributions of these fields to a demographic understanding of niches and range dynamics. Our review serves to formulate a demographic research agenda that entails: (1) advances in incorporating process‐based models of demographic responses and range dynamics into a statistical framework, (2) systematic collection of data on temporal changes in distribution and abundance and on the response of demographic rates to environmental variation, and (3) improved theoretical understanding of the scaling of demographic rates and the dynamics of spatially coupled populations. This demographic research agenda is challenging but necessary for improved comprehension and quantification of niches and range dynamics. It also forms the basis for understanding how niches and range dynamics are shaped by evolutionary dynamics and biotic interactions. Ultimately, the demographic research agenda should lead to deeper integration of biogeography with empirical and theoretical ecology.
With the expansion in the quantity and types of biodiversity data being collected, there is a need to find ways to combine these different sources to provide cohesive summaries of species' potential and realized distributions in space and time. Recently, model-based data integration has emerged as a means to achieve this by combining datasets in ways that retain the strengths of each. We describe a flexible approach to data integration using point process models, which provide a convenient way to translate across ecological currencies. We highlight recent examples of large-scale ecological models based on data integration and outline the conceptual and technical challenges and opportunities that arise. Species Distribution Models in EcologyLarge-scale ecological models of how species distributions and abundances vary over space and time are a critical tool in macroecology, biogeography, and conservation biology. They underpin our understanding of how biodiversity is shaped, how it is responding to anthropogenic activities, and how it might change in the future [1][2][3]. There is now a substantial literature on statistical tools for building species distribution models (SDMs) (see Glossary) and best practice in how to fit them [4][5][6][7]. SDMs also form a building block upon which more complex models, incorporating occupancy and/or abundance in space and time, can be built [8,9].
AimThe study and prediction of species-environment relationships is currently mainly based on species distribution models. These purely correlative models neglect spatial population dynamics and assume that species distributions are in equilibrium with their environment. This causes biased estimates of species niches and handicaps forecasts of range dynamics under environmental change. Here we aim to develop an approach that statistically estimates process-based models of range dynamics from data on species distributions and permits a more comprehensive quantification of forecast uncertainties. InnovationWe present an approach for the statistical estimation of processbased dynamic range models (DRMs) that integrate Hutchinson's niche concept with spatial population dynamics. In a hierarchical Bayesian framework the environmental response of demographic rates, local population dynamics and dispersal are estimated conditional upon each other while accounting for various sources of uncertainty. The method thus: (1) jointly infers species niches and spatiotemporal population dynamics from occurrence and abundance data, and (2) provides fully probabilistic forecasts of future range dynamics under environmental change. In a simulation study, we investigate the performance of DRMs for a variety of scenarios that differ in both ecological dynamics and the data used for model estimation.Main conclusions Our results demonstrate the importance of considering dynamic aspects in the collection and analysis of biodiversity data. In combination with informative data, the presented framework has the potential to markedly improve the quantification of ecological niches, the process-based understanding of range dynamics and the forecasting of species responses to environmental change. It thereby strengthens links between biogeography, population biology and theoretical and applied ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.