Noise reduction of aircrafts during take-off and landing has become an important part of research in aviation. The circulation of air around the airframe is a major source of noise during landing. This includes noise generated at the trailing edge. Open porous materials, such as porous aluminum, are investigated for the reduction of this noise. In this study, cold rolling is used to enhance the structure of porous aluminum in matters of aeroacoustics and mechanical properties. An important parameter characterizing the acoustic behavior is flow resistivity which is measured using the alternating airflow method. The flow resistivity is highly dependent upon the pore structure which is analyzed using three-dimensional computer tomography (CT). Additionally, CT combined with discontinuous tensile testing is used to study the influence of cold rolling on the damage behavior of porous aluminum. Besides the damage behavior, mechanical parameters have been determined to identify reasonable degrees of deformation. A cold rolling technique to produce material with a gradient in porosity is described and experimental porous trailing edges for measurements in an acoustic wind tunnel are shown. The findings of this study show that cold rolling is a promising way to customize porous aluminum for low-noise trailing edge applications.
The introduction of quiet short take-off and landing for civil aircraft operations in close proximity to the population poses important technological challenges. One critical aspect is the realization of extreme lift augmentation at low acoustic emissions. The aircraft concept selected to achieve this goal is a high-lift system equipped with an active flow-control non-slotted flap and a droop nose. For this specific configuration, trailing edge noise becomes a dominant noise source. Porous materials as a passive means for trailing-edge noise reduction are selected and characterized. Results of extensive experimental investigations in the acoustic wind tunnel Braunschweig are presented and discussed to point out the potential and limitations of the selected porous devices. Practical issues related to material manufacturing and integration into the wind tunnel model are addressed. The noise reduction potential of passive porous trailing-edge devices is found to strongly depend on both these aspects. Issues related to the characterization of the porous materials properties are described. Although porous materials are found to be successful at reducing trailing-edge noise emissions, the results indicate that there is still a need for more generic investigations to further clarify the parametric dependencies between noise reduction and material properties.
In the framework of the CRC 880 “Fundamentals of high-lift for future civil air craft” methods for the reduction of aircraft noise are investigated. An important method for this noise reduction is the usage of porous material as low noise trailing edges. To improve the aeroacoustic properties of porous materials, an innovative rolling process was established by Tychsen et al. (Metals 8:598, 2018). Here, the rolling process is described as it is used as an important method for the production of samples. The influence of cold rolling on two different porous materials namely porous aluminum 80–110 (PA 80–110) and PA 120–150 is investigated. Important characteristics studied are the porosity, mechanical properties and the dependence of flow resistivity from the degree of deformation. The flow resistivity is of particular interest as the aeroacoustic performance is significantly influenced by it. The results are then compared to the findings for PA 200–250, which was investigated in Tychsen et al. (Metals 8:598, 2018). Lastly, experimental trailing edges made out of cold rolled porous aluminum with a gradient in thickness reduction are shown. The characterization of the aeroacoustic behavior is not part of this study. Reference is made to Rossignol et al. (Int J Aeroacoust 19:365–384, 2020), where trailing edges shown here are characterized aeroacoustically. The findings shown here demonstrate that different porous materials can be tailored by cold rolling without negative impact on the mechanical behavior. It is proven that the new rolling process is a versatile tool for the production of gradient porous material.
To adapt porous material for its application as low noise trailing edge, a special rolling process, using a time-varied rolling gap, was used in previous research to produce a porosity gradient in the direction of rolling. Investigations suggest that a gradient in porosity may also be produced in the thickness direction of the material, i.e., in the rolling gap direction, without using a specialized rolling mill. Such a gradient may help to further increase acoustic efficiency of porous materials. The aim of this study was to analyze the dependency of such a gradient on the rolling parameters, and to clarify which stress components are significantly responsible for an increased near-surface compaction. Experiments using different relative compressed lengths were performed to analyze shear-dominated and friction-dominated rolling. The material was characterized using compression tests, computed tomography and flow resistance measurements. It is shown that the compressed length is an important parameter for adjusting a porosity gradient. Rolling with small values of compressed length during all rolling passes leads to increased compaction of near-surface regions, compared to interior ones. The difference in porosity achieved was up to 15%. Furthermore, the results suggested that a gradient in hydrostatic stress is responsible for the porosity gradient. Validation of the results by FE simulation is forthcoming, but not part of this publication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.