Zeolites are a very versatile class of materials that can display selective CO2 adsorption behavior and thus find applications in carbon capture, storage, and utilization (CCSU). In this contribution, the properties of zeolites as CO2 adsorbents are reviewed by critically presenting and discussing their assets and limitations. For this purpose, we first provide an overview of the CO2 adsorption mechanisms on different types of zeolites. Then, we systematically discuss the relationship between the physicochemical properties of zeolites (framework type, Si/Al ratio, and extra-framework cations) and their performance as CO2 adsorbents for the separation of CO2/CH4 (biogas) and CO2/N2 (flue gas) mixtures. Based on the trends and properties identified, we provide a comparison of the different zeolites and highlight their advantages and drawbacks for applicability in CO2 adsorption. Finally, we present the state of the art in the shaping of zeolites in macroscopic format, which is a key step toward their industrial utilization as adsorbents.
Recently, deep eutectic solvents (DES) have been considered as possible electrolytes for the electrochemical reduction of CO 2 to value-added products such as formic and oxalic acids. The applicability of pure DES as electrolytes is hindered by high viscosities. Mixtures of DES with organic solvents can be a promising way of designing superior electrolytes by exploiting the advantages of each solvent type. In this study, densities, viscosities, diffusivities, and ionic conductivities of mixed solvents comprising DES (i.e., reline and ethaline), methanol, and propylene carbonate were computed using molecular simulations. To provide a quantitative assessment of the affinity and mass transport of CO 2 and oxalic and formic acids in the mixed solvents, the solubilities and self-diffusivities of these solutes were also computed. Our results show that the addition of DES to the organic solvents enhances the solubilities of oxalic and formic acids, while the solubility of CO 2 in the ethaline-containing mixtures are in the same order of magnitude with the respective pure organic components. A monotonic increase in the densities and viscosities of the mixed solvents is observed as the mole fraction of DES in the mixture increases, with the exception of the density of ethaline-propylene carbonate which shows the opposite behavior due to the high viscosity of the pure organic component. The self-diffusivities of all species in the mixtures significantly decrease as the mole fraction of DES approaches unity. Similarly, the self-diffusivities of the dissolved CO 2 and the oxalic and formic acids also decrease by at least 1 order of magnitude as the composition of the mixture shifts from the pure organic component to pure DES. The computed ionic conductivities of all mixed solvents show a maximum value for mole fractions of DES in the range from 0.2 to 0.6 and decrease as more DES is added to the mixtures. Since for most mixtures studied here no prior experimental measurements exist, our findings can serve as a first data set based on which further investigation of DES-containing electrolyte solutions can be performed for the electrochemical reduction of CO 2 to useful chemicals.
Biomethane can be isolated from biogas through selective CO2 adsorption. Faujasite-type zeolites are promising adsorbents for CO2 separation due to their high CO2 adsorption capacity. While commonly inert binder materials are used to shape zeolite powders into the desired macroscopic format for application in an adsorption column, here we report the synthesis of Faujasite beads without the use of a binder and their application as CO2-adsorbents. Three types of binderless Faujasite beads (d = 0.4–0.8 mm) were synthesized using an anion-exchange resin hard template. All the prepared beads consisted mostly of small Faujasite crystals, as demonstrated by characterization with XRD and SEM, which are interconnected through a network of meso- and macropores (10–100 nm), yielding a hierarchically porous structure, as shown by N2 physisorption and SEM. The zeolitic beads showed high CO2 adsorption capacity (up to 4.3 mmol g−1 at 1 bar and 3.7 mmol g−1 at 0.4 bar) and CO2/CH4 selectivity (up to 19 at the partial pressures mimicking biogas, i.e., 0.4 bar CO2 and 0.6 bar CH4). Additionally, the synthesized beads have a stronger interaction with CO2 than the commercial zeolite powder (enthalpy of adsorption −45 kJ mol−1 compared to −37 kJ mol−1). Therefore, they are also suitable for CO2 adsorption from gas streams in which the CO2 concentration is relatively low, such as flue gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.