The Sm proteins B/B, D1, D2, D3, E, F, and G are components of the small nuclear ribonucleoproteins U1, U2, U4/U6, and U5 that are essential for the splicing of pre-mRNAs in eukaryotes. D1 and D3 are among the most common antigens recognized by anti-Sm autoantibodies, an autoantibody population found exclusively in patients afflicted with systemic lupus erythematosus. Here we demonstrate by protein sequencing and mass spectrometry that all arginines in the C-terminal arginine-glycine (RG) dipeptide repeats of the human Sm proteins D1 and D3, isolated from HeLa small nuclear ribonucleoproteins, contain symmetrical dimethylarginines (sDMAs), a posttranslational modification thus far only identified in the myelin basic protein. The further finding that human D1 individually overexpressed in baculovirus-infected insect cells contains asymmetrical dimethylarginines suggests that the symmetrical dimethylation of the RG repeats in D1 and D3 is dependent on the assembly status of D1 and D3. In antibody binding studies, 10 of 11 anti-Sm patient sera tested, as well as the monoclonal antibody Y12, reacted with a chemically synthesized C-terminal peptide of D1 containing sDMA, but not with peptides containing asymmetrically modified or nonmodified arginines. These results thus demonstrate that the sDMA-modified C terminus of D1 forms a major linear epitope for anti-Sm autoantibodies and Y12 and further suggest that posttranslational modifications of Sm proteins play a role in the etiology of systemic lupus erythematosus.
We describe the characterization of an 80-kDa protein cross-reacting with a monoclonal antibody against the human La autoantigen. The 80-kDa protein is a variant of rabip4 with an N-terminal extension of 108 amino acids and is expressed in the same cells. For this reason, we named it rabip4'. rabip4' is a peripheral membrane protein, which colocalized with internalized transferrin and EEA1 on early endosomes. Membrane association required the presence of the FYVE domain and was perturbed by the phosphatidylinositol 3-kinase inhibitor wortmannin. Expression of a dominant negative rabip4' mutant reduced internalization and recycling of transferrin from early endosomes, suggesting that it may be functionally linked to rab4 and rab5. In agreement with this, we found that rabip4' colocalized with the two GTPases on early endosomes and bound specifically and simultaneously to the GTP form of both rab4 and rab5. We conclude that rabip4' may coordinate the activities of rab4 and rab5, regulating membrane dynamics in the early endosomal system.
Optimal application of biological mass spectrometry (MS) in combination with two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) of human cerebrospinal fluid (CSF) can lead to the identification of new potential biological markers of neurological disorders. To this end, we analyzed a number of 2-D PAGE protein spots in a human CSF pool using spot co-localization, N-terminal sequencing, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and nanoliquid chromatography-electrospray ionization-time of flight-mass spectrometry (nanoLC-ESI-TOF-MS) with tandem MS switching. Our constructed CSF master contained 469 spots after image analysis and processing of 2-D gels. Upon visual inspection of our CSF master with the CSF pattern available on the ExPASy server, it was possible to locate and annotate 15 proteins. N-terminal sequence analysis and MALDI-MS peptide mass fingerprint analysis of both silver- and Coomassie Brilliant Blue (CBB) G-250-stained protein spots after in situ trypsin digest not only confirmed nine of the visually annotated spots but additionally resolved the identity of another 13 spots. Six of these proteins were not annotated on the 2-D ExPASy map: complement C3 alpha-chain (1321-1663), complement factor B, cystatin C, calgranulin A, hemoglobin beta-chain, and beta-2-microglobulin. It was clear that MALDI-MS identification from CBB G-250-stained, rather than from silver-stained, spots was more successful. In cases where no N-terminal sequence and/or no clear MALDI-MS result was available, nanoLC-ESI-TOF-MS and tandem MS automated switching was used to clarify and/or identify these protein spots by generating amino acid sequence tags. In addition, enrichment of the concentration of low-abundant proteins on 2-D PAGE was obtained by removal of albumin and immunoglobulins from the CSF pool using affinity chromatography. Subsequent analysis by 2-D PAGE of the fractionated CSF pool showed various new silver-stainable protein spots, of which four were identified by nanoLC-ESI-TOF-MS and tandem MS switching. No significant homology was found in either protein or DNA databases, indicating than these spots were unknown proteins.
A protein was isolated from rat C6 glioma‐conditioned medium and was biochemically characterized. The heparin‐binding protein has a native molecular mass of 55–75000Da, a molecular mass of 40–48000 Da under denaturing conditions, and a pI of 5.0–6.0. Based on the determined partial amino acid sequences, the full lenght cDNA encoding the rat and human proteins were cloned. The cDNA sequences identified the isolated rat and human protein as the homologue of a recently reported mouse osteoblast‐transforming‐growth‐factor‐β1‐inducible protein, encoded by the TSC‐36 gene [Shibanuma, M., Mashimo, J., Mita, A., Kuroki, T. & Nose, K. (1993) Eur. J. Biochem. 217, 13–19].
Analysis of the human, rat and mouse amino acid sequences indicates that these proteins are highly conserved (>92% sequence identity). Sequence similarities with follistatin and the follistatin‐like domain of agrin are revealed. The relationship with follistatin and agrin points to possible common functions for the cloned follistatin‐related proteins (FRP).
The protein has no effect on the inhibitory action of transforming growth factor‐β1, on CCl‐64 cell growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.