The crucial step in the conversion of solar to chemical energy in Photosynthesis takes place in the reaction center where the absorbed excitation energy is converted into a stable charge separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the near unity quantum efficiency of this process is unknown. Here we elucidate the role of coherence in determining the efficiency of charge separation in the plant photosystem II reaction centre (PSII RC) by comprehensively combining experiment (two-dimensional electronic spectroscopy) and theory (Redfield theory). We reveal the presence of electronic coherence between excitons as well as between exciton and charge transfer states which we argue to be maintained by vibrational modes. Furthermore, we present evidence for the strong correlation between the degree of electronic coherence and efficient and ultrafast charge separation. We propose that this coherent mechanism will inspire the development of new energy technologies.
Despite intense research into the optoelectronic properties of metal halide perovskites (MHPs), sub-bandgap absorption in MHPs remains largely unexplored. Here we recorded two-photon absorption spectra of MHPs using the time-resolved microwave conductivity technique. A two-step upward trend is observed in the two-photon absorption spectrum for methylammonium lead iodide, and some analogues, which implies that the commonly used scaling law is not applicable to MHPs. This aspect is further confirmed by temperature-dependent conductivity measurements. Using an empirical multiband tight binding model, spectra for methylammonium lead iodide were calculated by integration over the entire Brillouin zone, showing compelling similarity with experimental results. We conclude that the second upward trend in the two-photon absorption spectrum originates from additional optical transitions to the heavy and light electron bands formed by the strong spin-orbit coupling. Hence, valuable insight can be obtained in the opto-electronic properties of MHPs by sub-bandgap spectroscopy, complemented by modelling.
The effect of water addition during preparation of a CH NH PbI layer on the photodynamics is studied by femtosecond transient absorption. Both the regular perovskite and the aqueous analogue show charge thermalisation on a timescale of about 500 fs. This process is, however, less pronounced in the latter layer. The spectral feature associated with hot charges does not fully decay on this timescale, but also shows a long-lived (sub-ns) component. As water molecules may interfere with the hydrogen bonding between the CH NH cations and the inorganic cage, this effect is possibly caused by immobilisation of cation motion, suggesting a key role of CH NH dipole reorientation in charge thermalisation. This effect shows the possibility of controlling hot charge carrier cooling to overcome the Shockley-Queisser limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.