Plant cocktails used as cover crop present a significant multifunctional resource compared to monoculture, which may increase functional diversity within crop rotation and is particularly effective for designing mixtures with characteristics that increase the multifunctionality and sustainability of the agroecosystem. The objective was to evaluate sustainable agroecosystems models that improve the efficiency of nutrient cycling for crops. The treatments were arranged in four blocks in a split-plot design with two soil management (tillage and no-till) systems and three cropping systems (2 plant cocktails [PCs] and 1 natural vegetation [NV]). C/N ratio, lignin content, dry biomass (DB) production and decomposition, nutrients accumulation and mineralization by PCs and NV were evaluated. Decomposition and release of nutrients were monitored by the litterbag-method. PCs had a DB production twice higher than NV, essential for the adoption of no-tillage systems. The order of nutrient release was K> N> Ca> P> Mg. PCs as cover crops and green manure, with or without predominance of legumes and use of a no-tillage system, could be a technological strategy in agroecosystems for nutrients cycling in semi-arid regions.
Tillage systems strongly impact nutrient transformations and plant availability. Therefore, the objective of this study was to assess the impacts of conversion of conventional tillage (CT) to no-till (NT) with a mixture of cover crops and green manure as nutrient uptake in a fertilized melon (Cucumis melon) in a semi-arid region of Brazil. Two fields experimental involved randomized blocks design, in a split-plot scheme, with four replication treatments included three types of cover crops and two tillage systems (conventional and no-till). Subsamples of plant cocktails were used to assess the biomass production. Soil samples were analyzed during the melon growth for determination of soil moisture by the frequency domain reflectometry (FDR) probe. Soil solution samples were extracted with ceramic cups from each treatment, and analyzed for determination of TP, Na + , Ca 2+ , Mg 2+ , S and NO 3-N. Mobility of these elements was assessed in relation to management and different cover crops. The data showed slight or no strong effect of plant cocktails composition on nutrients dynamics in soil under melon. However, without incorporation of biomass and slower decomposition of residue mulch retained on the surface, risks of leaching losses were lower under NT than CT system. A higher concentration of cations in CT (for example, Ca +2 ~ 42.07 mg L-1) may be attributed to high soil moisture content and faster rate of mineralization of the biomass incorporated. Concentration of P was higher in top soil layers depth in NT system (~ 6.65 mg L-1 at 15 cm) because of the deposition of plant cocktail biomass in soil surface with low SOM contents placement of fertilizer, and possible formation of calcium phosphate with low solubility. Relatively, high concentration of NO 3-N (~ 60.16 mg L-1) in CT was attributed to increase in decomposition of soil organic matter (SOM) and crop residues incorporated into the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.