Biologically active compounds with different modes of action, such as, antiproliferative, antioxidant, antimicrotubule, have been isolated from marine sources, specifically algae and cyanobacteria. Recently research has been focused on peptides from marine animal sources, since they have been found as secondary metabolites from sponges, ascidians, tunicates, and mollusks. The structural characteristics of these peptides include various unusual amino acid residues which may be responsible for their bioactivity. Moreover, protein hydrolysates formed by the enzymatic digestion of aquatic and marine by-products are an important source of bioactive peptides. Purified peptides from these sources have been shown to have antioxidant activity and cytotoxic effect on several human cancer cell lines such as HeLa, AGS, and DLD-1. These characteristics imply that the use of peptides from marine sources has potential for the prevention and treatment of cancer, and that they might also be useful as molecular models in anticancer drug research. This review focuses on the latest studies and critical research in this field, and evidences the immense potential of marine animals as bioactive peptide sources.
The control of micro-organisms responsible for pre- and postharvest diseases of agricultural products, mainly viruses and fungi, is a problem that remains unresolved, together with the environmental impact of the excessive use of chemicals to tackle this problem. Current efforts are focused on the search for efficient alternatives for microbial control that will not result in damage to the environment or an imbalance in the existing biota. One alternative is the use of natural antimicrobial compounds such as chitosan, a linear cationic biopolymer, which is biodegradable, biocompatible and non-toxic, has filmogenic properties and is capable of forming matrices for the transport of active substances. The study of chitosan has attracted great interest owing to its ability to form complexes or matrices for the controlled release of active compounds such as micro- and nanoparticles, which, together with the biological properties of chitosan, has allowed a major breakthrough in the pharmaceutical and biomedical industries. Another important field of study is the development of chitosan-based matrices for the controlled release of active compounds in areas such as agriculture and food for the control of viruses, bacteria and fungi, which is one of the least exploited areas and holds much promise for future research.
Fresh sierra fish (Scomberomorus sierra) fillets were packed in low-density polyethylene films with butylated hydroxytoluene (BHT-LDPE) added. Fillets packed in LDPE with no BHT were used as controls (LDPE). The packed fillets were stored at -25 degrees C for 120 days in which the film released 66.5% of the antioxidant. The influence of the antioxidant on lipid and protein quality, lipid oxidation, muscle structure changes, and shear-force resistance was recorded. As compared to LDPE films, fillets packed in BHT-LDPE films showed lower lipid oxidation, thiobarbituric acid values (4.20 +/- 0.52 vs 11.95 +/- 1.06 mg malonaldehyde/kg), peroxide values (7.20 +/- 1.38 vs 15.15 +/- 1.48 meq/kg), and free fatty acids (7.98 +/- 0.43 vs 11.83 +/- 1.26% of oleic acid). Fillets packed in BHT-LDPE films showed less tissue damage and lost less firmness than fillets packed in LDPE. A significant relationship between lipid oxidation and texture was detected (R2 adjusted, 0.70-0.73). BHT-LDPE films may be used not only to prevent lipid oxidation but also to minimize protein damage to prolong the shelf life of sierra fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.