The purification to homogeneity of p16, a protein with an electrophoretic mobility compatible with an apparent molecular mass of 16 kDa, from nuclei of ungerminated pea embryonic axes is described. A cDNA clone of its gene, which was designated psp54, was also isolated. The psp54 cDNA contains an open reading frame coding for a 54.4-kDa polypeptide (p54). p16 corresponds to the C-terminal third of p54, although the mechanisms by which the primary polypeptide could be processed are not yet known. The sequence of p54 is 60% identical with that of the precursor of a sucrose-binding soybean protein, and, to a lesser extent (31±34%), it shares homology with some storage proteins. p16 is also 30% homologous with Nhp2p, a yeast nuclear protein. The psp54 gene, present in a single copy in pea genome, starts being expressed during seed desiccation. Soon after rehydration in seed germination, p54 mRNA disappears and is no longer detectable in vegetative tissues, except in response to hydric stress (exposure to abscisic acid, osmolites or desiccation). p16 can be recovered from nuclei cross-linked to histone H3, when the disulfide bridges that occur in vivo are preserved. On the other hand, p16 shares some properties with dehydrins, which are thought to protect cellular structures against desiccation. We propose that the possible precursor polypeptide p54 belongs to the vicilin superfamily, members of which play a variety of roles. The function of p16 may be related to the protection of chromatin structure against desiccation during seed development.
BackgroundIn eukaryotes, the serpins constitute a wide family of protease inhibitors regulating many physiological pathways. Many reports stressed the key role of serpins in several human physiopathologies including mainly the inflammatory bowel diseases. In this context, eukaryotic serpins were largely studied and their use to limit inflammation was reported. In comparison to that, bacterial serpins and mainly those from human gut microbiota remain poorly studied.ResultsThe two genes encoding for putative serpins from the human gut bacterium Eubacterium sireaum, display low sequence identities. These genes were overexpressed and the encoded proteins, named Siropins, were purified. Activity studies demonstrated that both purified proteins inhibited serine proteases but surprisingly they preferentially inhibited two human serine proteases (Human Neutrophil Elastase and Proteinase3). The biochemical characterization of these Siropins revealed that Siropin 1 was the most active and stable at low pH values while Siropin 2 was more thermoactive and thermostable. Kinetic analysis allowed the determination of the stoichiometry of inhibition (SI) which was around 1 and of the association rate constants of 7.7 × 104 for the Human Neutrophil Elastase and 2.6 × 105 for the Proteinase3. Moreover, both Siropins displayed the ability to inhibit proteases usually present in fecal waters. Altogether our data indicate the high efficiency of Siropins and their probable involvement in the control of the overall intestine protease activity.ConclusionsHere we report the purification and the biochemical characterization of two novel serpins originated from Eubacterium sireaum, a human gastro-intestinal tract commensal bacteria. These proteins that we called Siropins, efficiently inhibited two human proteases reported to be associated with inflammatory bowel diseases. The determination of the biochemical properties of these enzymes revealed different temperature and pH behaviours that may reflect adaptation of this human commensal bacterium to different ecological environments. To the best of our knowledge, it is the first bacterial serpins showing an attractive inhibition of fecal proteases recovered from a mice group with chemically induced inflammation. Altogether our data highlight the interesting potential of Siropins, and serpins from the human gut microbiota in general, to be used as new alternative to face inflammatory diseases.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-016-0596-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.