Existence of maximal and minimal solutions are proved for the first order singular systems with boundary conditions by combining the method of upper and lower solutions and the monotone iterative technique.
Abstract:In this paper, we proposed a new solver for the Navier-Stokes equations coming from the channel flow with high Reynolds number. We use the preconditioned Krylov subspace iterative methods such as Generalized Minimum Residual Methods (GMRES). We consider the variation of the Hermitian and Skew-Hermitian splitting to construct the preconditioner. Convergence of the preconditioned iteration is analyzed. We can show that the proposed preconditioner has a robust behavior for the Navier-Stokes problems in variety of models. Numerical experiments show the robustness and efficiency of the preconditioned GMRES for the Navier-Stokes problems with Reynolds numbers up to ten thousands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.