■ We present the broad outlines of a roadmap toward human-level artificial general intelligence (henceforth, AGI). We begin by discussing AGI in general, adopting a pragmatic goal for its attainment and a necessary foundation of characteristics and requirements. An initial capability landscape will be presented, drawing on major themes from developmental psychology and illuminated by mathematical, physiological, and information-processing perspectives. The challenge of identifying appropriate tasks and environments for measuring AGI will be addressed, and seven scenarios will be presented as milestones suggesting a roadmap across the AGI landscape along with directions for future research and collaboration.This article is the result of an ongoing collaborative effort by the coauthors, preceding and during the AGI Roadmap Workshop held at the University of Of course, this is far from the first attempt to plot a course toward humanlevel AGI: arguably this was the goal of the founders of the field of artificial intelligence in the 1950s, and has been pursued by a steady stream of AI researchers since, even as the majority of the AI field has focused its attention on more narrow, specific subgoals. The ideas presented here build on the ideas of others in innumerable ways, but to review the history of AI
Pei Wang's paper titled "On Defining Artificial Intelligence" was published in a special issue of the Journal of Artificial General Intelligence (JAGI) in December of last year (Wang, 2019). Wang has been at the forefront of AGI research for over two decades. His non-axiomatic approach to reasoning has stood as a singular example of what may lie beyond narrow AI, garnering interest from NASA and Cisco, among others. We consider his article one of the strongest attempts, since the beginning of the field, to address the long-standing lack of consensus for how to define the field and topic of artificial intelligence (AI). In the recent AGISI survey on defining intelligence (Monett and Lewis, 2018), Pei Wang's definition, The essence of intelligence is the principle of adapting to the environment while working with insufficient knowledge and resources. Accordingly, an intelligent system should rely on finite processing capacity, work in real time, open to unexpected tasks, and learn from experience. This working definition interprets "intelligence" as a form of "relative rationality" (Wang, 2008), 1. Most striking in these numbers is the glaring absence of female authors. A common reason among female academics for rejecting our invitation to contribute was overcommitment. As a community, we may want to think of new, different ways of engaging the full spectrum of AI practitioners if we value inclusion as an essential constituent of a healthy scientific growth. Self determination and willingness to participate are also essential. This is an open access article licensed under the Creative Commons BY-NC-ND License.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.