Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
The success of teams in enterprise social networks (ESN) is of high importance in today's project-based and digitised work environments. In this context, onboarding of new hires or allocated team members means the adoption of group characteristics and behaviours. Studies identified cohesion and trust as part of the socialisation process and found communication behaviours that facilitate socialisation. ESN not only enable efficient communication or relationship building, they also make the socialisation processes visible and analysable. In this paper, we propose to use metrics from social network analysis (e.g. extraversion, openness and proactiveness) to operationalise communication behaviours identified as positive for socialisation. First evaluations with two ESN data sets in OLS, beta regression and multilevel models sparsely support the influence on closeness, which we expect to reflect the level of group integration.
People analytics depicts the algorithmization of human resources management characterized by the data-driven automation and support of people-related processes or tasks. On the one hand, people analytics promises productivity increases through optimizing workforce planning, hiring, or talent development. On the other hand, the extensive data collection and analysis of employees’ behaviors can be perceived as invasive, raising privacy concerns. This debate cannot only be explained by diverging norms and values, for example, practitioners realizing commercial opportunities while being criticized by academic commentaries. Instead, an alternative explanation suggests that the opposing views can be reconciled by diving into the conceptual differences regarding what analytical methods and data sources people analytics entails. Hence, this paper proposes the conceptions of operational and strategic people analytics based on a literature review of academics’ and practitioners’ literature. Four propositions about these conceptions’ privacy and performance implications are derived. Future research should empirically validate these propositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.