A popular model for sensory processing, known as predictive coding, proposes that incoming signals are iteratively compared with top-down predictions along a hierarchical processing scheme. At each step, error signals arising from differences between actual input and prediction are forwarded and recurrently minimized by updating internal models to finally be "explained away". However, the neuronal mechanisms underlying such computations and their limitations in processing speed are largely unknown. Further, it remains unclear at which step of cortical processing prediction errors are explained away, if at all. In the present study, human subjects briefly viewed the superposition of two orthogonally oriented gratings followed by abrupt removal of one orientation after either 33 or 200 milliseconds. Instead of strictly seeing the remaining orientation, observers report rarely but highly significantly an illusory percept of the arithmetic difference between previous and actual orientations. Previous findings in cats using the identical paradigm suggest that such difference signals are inherited from first steps of visual cortical processing. In light of early modeling accounts of predictive coding, in which visual neurons were interpreted as residual error detectors signaling the difference between actual input and its temporal prediction based on past input, our data may indicate continued access to residual errors. Such strategy permits time-critical perceptual decision making across a spectrum of competing internal signals up to the highest levels of processing. Thus, the occasional appearance of a prediction error-like illusory percept may uncover maintained flexibility at perceptual decision stages when subjects cope with highly dynamic and ambiguous visual stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.