The modelling and simulation of cyclic sand ratcheting is tackled via a plasticity model formulated within the well-known critical state, bounding surface SANISAND framework. For this purpose, a third locustermed 'memory surface'-is cast into the constitutive formulation, so as to phenomenologically capture micro-mechanical, fabric-related processes directly relevant to the cyclic response. The predictive capability of the model under numerous loading cycles ('high-cyclic' loading) is explored with focus on drained loading conditions, and validated against experimental test results from the literature-including triaxial, simple shear and oedometer cyclic loading. The model proves capable of reproducing the transition from ratcheting to shakedown response, in combination with a single set of soil parameters for different initial, boundary and loading conditions. This work contributes to the analysis of soil-structure interaction under high-cyclic loading events, such as those induced by environmental and/or traffic loads.
Summary
In soil‐structure interaction modeling of systems subjected to earthquake motions, it is classically assumed that the incoming wave field, produced by an earthquake, is unidimensional and vertically propagating. This work explores the validity of this assumption by performing earthquake soil‐structure interaction modeling, including explicit modeling of sources, seismic wave propagation, site, and structure. The domain reduction method is used to couple seismic (near‐field) simulations with local soil‐structure interaction response. The response of a generic nuclear power plant model computed using full earthquake soil‐structure interaction simulations is compared with the current state‐of‐the‐art method of deconvolving in depth the (simulated) free‐field motions, recorded at the site of interest, and assuming that the earthquake wave field is spatially unidimensional. Results show that the 1‐D wave‐field assumption does not hold in general. It is shown that the way in which full 3‐D analysis results differ from those which assume a 1‐D wave field is dependent on fault‐to‐site geometry and motion frequency content. It is argued that this is especially important for certain classes of soil‐structure systems of which nuclear power plants subjected to near‐field earthquakes are an example.
This work presents a critical state plasticity model for predicting the response of sands to cyclic loading. The well-known bounding surface SANISAND framework by Dafalias and Manzari (2004) is enhanced with a 'memory surface' to capture micro-mechanical, fabric-related processes directly effecting cyclic sand behaviour. The resulting model, SANISAND-MS, was recently proposed by Liu et al. (2019), and successfully applied to the simulation of drained sand ratcheting under thousands of loading cycles. Herein, novel ingredients are embedded into Liu et al. (2019)'s formulation to better capture the effects of fabric evolution history on sand stiffness and dilatancy. The new features enable remarkable accuracy in simulating undrained pore pressure build-up and cyclic mobility behaviour in medium-dense/dense sand. The performance of the upgraded SANISAND-MS is validated against experimental test results from the literature-including undrained cyclic triaxial tests at varying cyclic loading conditions and pre-cyclic consolidation histories. The proposed modelling platform will positively impact the study of relevant cyclic/dynamic problems, for instance, in the fields of earthquake and offshore geotechnics.
Serviceability criteria for offshore monopiles include the estimation of long-term, permanent tilt under repeated operational loads. In the lack of well-established analysis methods, experimental and numerical research has been carried out in the last decade to support the fundamental understanding of monopile–soil interaction mechanisms, and the conception of engineering methods for monopile tilt predictions. With a focus on the case of monopiles in sand, this work shows how step-by-step/implicit, three-dimensional (3D) finite-element (FE) modelling can be fruitfully applied to the analysis of cyclic monopile–soil interaction and related soil deformation mechanisms. To achieve adequate simulation of cyclic sand ratcheting and densification around the pile, the recently proposed SANISAND-MS model is adopted. The link between local soil behaviour and global monopile response to cyclic loading is discussed through detailed analysis of model prediction. Overall, the results of numerical parametric studies confirm that the proposed 3D FE modelling framework can reproduce relevant experimental evidence about monopile–soil interaction, and support future improvement of engineering design methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.