We introduce a method to numerically compute equilibrium measures for problems with attractive-repulsive power law kernels of the form Kpx ´yq " |x´y| α α ´|x´y| β β using recursively generated banded and approximately banded operators acting on expansions in ultraspherical polynomial bases. The proposed method reduces what is naïvely a difficult to approach optimization problem over a measure space to a straightforward optimization problem over one or two variables fixing the support of the equilibrium measure. The structure and rapid convergence properties of the obtained operators results in high computational efficiency in the individual optimization steps. We discuss stability and convergence of the method under a Tikhonov regularization and use an implementation to showcase comparisons with analytically known solutions as well as discrete particle simulations. Finally, we numerically explore open questions with respect to existence and uniqueness of equilibrium measures as well as gap forming behaviour in parameter ranges of interest for power law kernels, where the support of the equilibrium measure splits into two intervals.
We propose finite-volume schemes for the Cahn-Hilliard equation that unconditionally and discretely satisfy the boundedness of the phase field and the free-energy dissipation. Our numerical framework is applicable to a variety of free-energy potentials including the Ginzburg-Landau and Flory-Huggins, general wetting boundary conditions and degenerate mobilities. Its central thrust is the finite-volume upwind methodology, which we combine with a semi-implicit formulation based on the classical convex-splitting approach for the free-energy terms. Extension to an arbitrary number of dimensions is straightforward thanks to their cost-saving dimensional-splitting nature, which allows to efficiently solve higher-dimensional simulations with a simple parallelization. The numerical schemes are validated and tested in a variety of prototypical configurations with different numbers of dimensions and a rich variety of contact angles between droplets and substrates.
We consider several pressureless variants of the compressible Euler equation driven by nonlocal repulsionattraction and alignment forces with Poisson interaction. Under an energy admissibility criterion, we prove existence of global measure-valued solutions, i.e., very weak solutions described by a classical Young measure together with appropriate concentration defects. We then investigate the evolution of a relative energy functional to compare a measure-valued solution to a regular solution emanating from the same initial datum. This leads to a (partial) weak-strong uniqueness principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.