Growth differentiation factor 15 (GDF15), a distant member of the transforming growth factor (TGF)-β family, is a secreted protein that circulates as a 25-kDa dimer. In humans, elevated GDF15 correlates with weight loss, and the administration of GDF15 to mice with obesity reduces body weight, at least in part, by decreasing food intake. The mechanisms through which GDF15 reduces body weight remain poorly understood, because the cognate receptor for GDF15 is unknown. Here we show that recombinant GDF15 induces weight loss in mice fed a high-fat diet and in nonhuman primates with spontaneous obesity. Furthermore, we find that GDF15 binds with high affinity to GDNF family receptor α-like (GFRAL), a distant relative of receptors for a distinct class of the TGF-β superfamily ligands. Gfral is expressed in neurons of the area postrema and nucleus of the solitary tract in mice and humans, and genetic deletion of the receptor abrogates the ability of GDF15 to decrease food intake and body weight in mice. In addition, diet-induced obesity and insulin resistance are exacerbated in GFRAL-deficient mice, suggesting a homeostatic role for this receptor in metabolism. Finally, we demonstrate that GDF15-induced cell signaling requires the interaction of GFRAL with the coreceptor RET. Our data identify GFRAL as a new regulator of body weight and as the bona fide receptor mediating the metabolic effects of GDF15, enabling a more comprehensive assessment of GDF15 as a potential pharmacotherapy for the treatment of obesity.
Multiple studies suggest that lipid oversupply to skeletal muscle contributes to the development of insulin resistance, perhaps by promoting the accumulation of lipid metabolites capable of inhibiting signal transduction. Herein we demonstrate that exposing muscle cells to particular saturated free fatty acids (FFAs), but not mono-unsaturated FFAs, inhibits insulin stimulation of Akt/protein kinase B, a serine/threonine kinase that is a central mediator of insulin-stimulated anabolic metabolism. These saturated FFAs concomitantly induced the accumulation of ceramide and diacylglycerol, two products of fatty acyl-CoA that have been shown to accumulate in insulin-resistant tissues and to inhibit early steps in insulin signaling. Preventing de novo ceramide synthesis negated the antagonistic effect of saturated FFAs toward Akt/protein kinase B. Moreover, inducing ceramide buildup recapitulated and augmented the inhibitory effect of saturated FFAs. By contrast, diacylglycerol proved dispensable for these FFA effects. Collectively these results identify ceramide as a necessary and sufficient intermediate linking saturated fats to the inhibition of insulin signaling.The peptide hormone insulin stimulates the uptake and storage of glucose in skeletal muscle and adipose tissue while simultaneously inhibiting its efflux from the liver. In certain pathological conditions, including Type 2 diabetes mellitus (1) and metabolic syndrome X (2), these tissues become resistant to insulin such that a maximal dose of the hormone is unable to elicit these anabolic responses. Numerous studies suggest that the oversupply of lipid to peripheral tissues might contribute to the development of this insulin resistance. First, insulin-resistant subjects frequently display signs of abnormal lipid metabolism including obesity (3), increased circulating free fatty acid (FFA) 1 concentrations (4, 5), and elevated intramyocellular lipid levels (6). In fact, the size of the intramyocellular lipid depot correlates more tightly with the severity of insulin resistance than most known risk factors (6). Second, experimentally exposing peripheral tissues to lipids decreases their sensitivity to insulin. For example, (a) incubating isolated muscle strips or cultured muscle cells with FFAs (7-11), (b) infusing lipid emulsions into rodents or humans (12-15), or (c) expressing lipoprotein lipase in skeletal muscle of transgenic mice (16, 17) promotes intramyocellular lipid accumulation and compromises insulin-stimulated glucose uptake. These observations have prompted investigators to hypothesize that increased availability of lipids to peripheral tissues causes insulin resistance, perhaps by promoting the accumulation of one or more fat-derived metabolites capable of inhibiting insulin action (6, 18). The insulin receptor is a heterotetrameric tyrosine kinase receptor that mediates all of the anabolic effects of insulin (19). The activated receptor phosphorylates intracellular docking molecules (termed insulin receptor substrates, or IRS proteins) that r...
The recent implementation of genomic and lipidomic approaches has produced a large body of evidence implicating the sphingolipid ceramide in a diverse range of physiological processes and as a critical modulator of cellular stress. In this review, we discuss from a historical perspective the most important discoveries produced over the last decade supporting a role for ceramide and its metabolites in the pathogenesis of insulin resistance and other obesity-associated metabolic diseases. Moreover, we describe how a ceramide-centric view of insulin resistance might be reconciled in the context of other prominent models of nutrient-induced insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.