Aim of study: This paper reviews the global research during the last 6 years (2007)(2008)(2009)(2010)(2011)(2012) on the state, trends and potential of remote sensing for detecting, mapping and monitoring forest defoliation caused by insects.Area of study: The review covers research carried out within different countries in Europe and America.Main results: A nation or region wide monitoring system should be scaled in two levels, one using time-series with moderate to coarse resolutions, and the other with fine or high resolution. Thus, MODIS data is increasingly used for early warning detection, whereas Landsat data is predominant in defoliation damage research. Furthermore, ALS data currently stands as the more promising option for operative detection of defoliation.Vegetation indices based on infrared-medium/near-infrared ratios and on moisture content indicators are of great potential for mapping insect pest defoliation, although NDVI is the most widely used and tested.Research highlights: Among most promising methods for insect defoliation monitoring are Spectral Mixture Analysis, best suited for detection due to its sub-pixel recognition enhancing multispectral data, and use of logistic models as function of vegetation index change between two dates, recommended for predicting defoliation.
Abstract:Forest structural parameters such as quadratic mean diameter, basal area, and number of trees per unit area are important for the assessment of wood volume and biomass and represent key forest inventory attributes. Forest inventory information is required to support sustainable management, carbon accounting, and policy development activities. Digital image processing of remotely sensed imagery is increasingly utilized to assist traditional, more manual, methods in the estimation of forest structural attributes over extensive areas, also enabling evaluation of change over time. Empirical attribute estimation with remotely sensed data is frequently employed, yet with known limitations, especially over complex environments such as Mediterranean forests. In this study, the capacity of high spatial resolution (HSR) imagery and related techniques to model structural parameters at the stand level (n = 490) in Mediterranean pines in Central Spain is tested using data from the commercial satellite QuickBird-2. Spectral and spatial information derived from multispectral and panchromatic imagery (2.4 m and 0.68 m sided pixels, respectively) served to model structural parameters. Classification and Regression Tree Analysis (CART) was selected for the modeling of attributes. Accurate models were produced of quadratic mean diameter (QMD) (R 2 = 0.8; RMSE = 0.13 m) with an average error of 17% while basal area (BA) models produced an average error of 22% (RMSE = 5.79 m 2 /ha).
OPEN ACCESS
Remote Sens. 2012, 4 136When the measured number of trees per unit area (N) was categorized, as per frequent forest management practices, CART models correctly classified 70% of the stands, with all other stands classified in an adjacent class. The accuracy of the attributes estimated here is expected to be better when canopy cover is more open and attribute values are at the lower end of the range present, as related in the pattern of the residuals found in this study. Our findings indicate that attributes derived from HSR imagery captured from space-borne platforms have capacity to inform on local structural parameters of Mediterranean pines. The nascent program for annual national coverages of HSR imagery over Spain offers unique opportunities for forest structural attribute estimation; whereby, depletions can be readily captured and successive annual collections of data can support or enable refinement of attributes. Further, HSR imagery and associated attribute estimation techniques can be used in conjunction, not necessarily in competition to, more traditional forest inventory with synergies available through provision of data within an inventory cycle and the capture of forest disturbance or depletions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.