Seed dispersal is one of the most studied plant–animal mutualisms. It has been proposed that the dispersal of many large-seeded plants from Neotropical forests was primarily conducted by extinct megafauna, and currently by livestock. Parrots can transport large fruits using their beaks, but have been overlooked as seed dispersers. We demonstrate that three macaws (Ara ararauna, A. glaucogularis and A. severus) are the main dispersers of the large-seeded motacú palm Attalea princeps, which is the biomass-dominant tree in the Bolivian Amazonian savannas. Macaws dispersed fruits at high rates (75–100% of fruits) to distant (up to 1200 m) perching trees, where they consumed the pulp and discarded entire seeds, contributing to forest regeneration and connectivity between distant forests islands. The spatial distribution of immature palms was positively associated to the proximity to macaws’ perching trees and negatively to the proximity to cattle paths. The disperser role of livestock, presumably a substitute for extinct megafauna, had little effect due to soil compaction, trampling and herbivory. Our results underscore the importance of macaws as legitimate, primary dispersers of large-seeded plants at long distances and, specifically, their key role in shaping the landscape structure and functioning of this Amazonian biome.
The extinction of ecological functions is increasingly considered a major component of biodiversity loss, given its pervasive effects on ecosystems, and it may precede the disappearance of the species engaged. Dispersal of many large-fruited (>4 cm diameter) plants is thought to have been handicapped after the extinction of megafauna in the Late Pleistocene and the recent defaunation of large mammals. We recorded the seed dispersal behavior of two macaws (Anodorhynchus hyacinthinus and Anodorhynchus leari) in three Neotropical biomes, totaling >1700 dispersal events from 18 plant species, 98% corresponding to six large-fruited palm species. Dispersal rates varied among palm species (5%–100%). Fruits were moved to perches at varying distances (means: 17–450 m, maximum 1620 m). Macaws also moved nuts after regurgitation by livestock, in an unusual case of tertiary dispersal, to distant perches. A high proportion (11%–75%) of dispersed nuts was found undamaged under perches, and palm recruitment was confirmed under 6%–73% of the perches. Our results showed that these macaws were legitimate, long-distance dispersers, and challenge the prevailing view that dispersal of large-fruited plants was compromised after megafauna extinction. The large range contraction of these threatened macaws, however, meant that these mutualistic interactions are functionally extinct over large areas at a continental scale.
The dispersal of many large-seeded plants is thought to have been handicapped by the extinction of megafauna in the late Pleistocene, and due to the ongoing defaunation of the largest of the extant dispersers. Oversized fruits defined as "megafaunal" provide variable amounts of flesh even though many of them cannot be ingested entirely, nor their seeds defecated, by any extant vertebrate. This apparent mismatch lead to the hypothesis of anachronisms involving extinct megafauna as dispersal-mediated selective agents on fruit traits shaped through endozoochory. It has been suggested that free-ranging livestock partially supply the dispersal functions previously provided by those globally or regionally extinct species. However, there is little knowledge on the role of livestock as a surrogate for megafauna dispersal agents relative to living wild dispersers. Here, we focus on seed dispersal of six palm species (Attalea eichleri, Attalea barreirensis, Attalea speciosa, Attalea princeps, Mauritia flexuosa, Acrocomia totai) with large fruits that conform to the so-called "megafaunal syndrome". Data on seed dispersal were obtained by observations and camera trapping in the Cerrado, Pantanal and Amazonia biomes in Bolivia and Brazil. Rich communities of wild seed dispersers differing among palm species and study areas were recorded, including rodents, monkeys, canids, and a wide variety of birds, especially parrots. Long-distance primary dispersal was mainly conducted by parrots, while multiple species acted as short-and medium-distance secondary dispersers. Among livestock, dispersal was limited to seeds of A. totai and A. princeps moved by several species through stomatochory and endozoochory (mainly regurgitation). These results show that the large seeds can be efficiently dispersed externally by a wide array of present-day vertebrates of variable size but much smaller than extinct megafauna and livestock. A knowledge gap of the natural history of these and other plants with oversized fruits assumed to be maladapted for contemporary dispersal may have been partially favored by neglecting some key disperser guilds (e.g., parrots) and dispersal mechanisms (e.g., ectozoochory). The evaluation of historic and ongoing defaunation of key external dispersers is advocated to understand the influence of actual (rather than putative) dispersers on contemporary frugivore-plant mutualistic interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.