BackgroundHuman-predator conflicts are directly or indirectly threatening many species with extinction. Thus, biologists are urged to find simple solutions to complex situations while avoiding unforeseen conservation outcomes. The provision of supplementary food at artificial feeding sites (AFS) is frequently used in the conservation of scavenger bird populations currently suffering from indirect poisoning, although no scientific studies on its effectiveness have been conducted.Methodology/Principal FindingsWe used a long-term data set of 95 individually marked birds from the largest European core of the endangered bearded vulture (Gypaetus barbatus) to test the long-term effects of specific AFS for bearded vultures on their survival rates (by CMR models) and population dynamics (by Monte Carlo simulations) in an area where fatalities derived from illegal poisoning and the use of other toxics like veterinary drugs have increased over the last several years. Our data support the positive relationship between the use of AFS and survival. However, contrary to theoretical predictions (e.g. high and more stable adult survival among long-lived species), the use of AFS increased only survival of pre-adults. Moreover, AFS buffered the effects of illegal poisoning on this age-class, while adult survival decreased over years. Our simulations predicted a maximum value of extinction probability over a time horizon of 50 years. Population projections run with survival rates expected in scenarios without poisoning predicted the situation of least conservation concern, while including only AFS can maintain a large floater surplus that may delay population decline but fails to reduce poisoning risk among adults.Conclusions/SignificanceAlthough AFS are not effective to save bearded vultures from an expected population decline, they delay population extinction and can be a useful tool for prolonging population viability while combating illegal and indirect poisoning. The eradication of different sources of poisoning is of top priority to ensure the long-term viability of this and many other species.
The main objective of many conservation programs is to increase population size by improving a species' survival and reproduction. However, density dependence of demographic parameters may confound this approach. In this study we used a 25-year data set on Bearded Vultures (Gypaetus barbatus) in Spain to evaluate the consequences of population growth on reproductive performance. Unlike its coefficient of variation (CV), mean annual productivity decreased with increasing population size. After controlling for territorial heterogeneity, productivity also was negatively related to the distance to the nearest conspecific breeding pair and to supplementary feeding points where floaters congregate. These results suggest that vulture populations are regulated as posited by the site-dependency hypothesis: as the population increases, average productivity decreases because progressively poorer territories are used. The combined effects of the shrinkage of territories and the presence of floaters around supplementary feeding points seem to be the main causes of productivity decline and are therefore the main determinants of territory quality. This has conservation implications, especially concerning the role of supplementary feeding points. Supplementary feeding should be reviewed given that its usefulness in reducing preadult mortality has not yet been proved and its effect on productivity, as our results suggest, is negative.
Summary1. The role of individual experience vs. the use of conspecific cues on breeding dispersal decisions have seldom been determined in colonial birds. We studied causes of breeding dispersal in the lesser kestrel ( Falco naumanni ), a species that breeds in colonies of variable size as well as solitarily. During a 6-year study in Spain, we gathered information on 486 subsequent breeding attempts and on 26 explanatory variables which evaluated individual experience, conspecific cues in terms of breeding performance and colony size, and different ecological and populational characteristics. 2. Two decisions were separately analysed: whether or not to disperse, and how far to move. Generalized Linear Mixed Models (GLMMs) allowed us to identify the relative contribution of each explanatory variable while controlling for the non-independence of individual dispersal decisions across years. 3. Females seemed to disperse more often than males (34% vs. 19%), and both sexes apparently dispersed less with age. However, a GLMM showed that experience (i.e. the number of years a bird bred in a particular colony) was the only factor influencing breeding dispersal. Birds showed higher site fidelity the greater their experience in a colony, which could be related to benefits derived of increased local familiarity. A second GLMM showed that, before birds acquired experience in a particular colony, individual nest failure due to predation and proximity to other colonies increased the probability of dispersal, dispersal being also higher in colonies with poor conspecific breeding success. Furthermore, solitary nesting birds were more prone to disperse and dispersal probability decreased the larger the colony of origin, according to fitness expectations associated with colony size. 4. A GLMM explaining dispersal distances retained two variables -birds dispersed farther the lower the breeding density in the surroundings, and the larger the distance to the nearest colony. Dispersing birds tended to settle within their previous foraging areas (median dispersal distance = 1·6 km), being constrained by the availability of nearby colonies. 5. Lesser kestrels mainly cue on their own breeding performance and experience in a particular colony at the time of taking a dispersal decision. However, inexperienced birds also partially cue on the size and breeding success of their own colonies ( but not on the size or breeding performance of other colonies), and birds moved larger distances when dispersing from areas of low populational density. These results support some degree of conspecific attraction.
Wind-farms receive public and governmental support as an alternative energy source mitigating air pollution. However, they can have adverse effects on wildlife, particularly through collision with turbines. Research on wind-farm effects has focused on estimating mortality rates, behavioural changes or interspecific differences in vulnerability. Studies dealing with their effects on endangered or rare species populations are notably scarce. We tested the hypothesis that wind-farms increase extinction probability of long-lived species through increments in mortality rates. For this purpose, we evaluate potential consequences of wind-farms on the population dynamics of a globally endangered long-lived raptor in an area where the species maintains its greatest stronghold and wind-farms are rapidly increasing. Nearly onethird of all breeding territories of our model species are in wind-farm risk zones. Our intensive survey shows that wind-farms decrease survival rates of this species differently depending on individual breeding status. Consistent with population monitoring, population projections showed that all subpopulations and the meta-population are decreasing. However, population sizes and, therefore, time to extinction significantly decreased when wind-farm mortality was included in models. Our results represent a qualitative warning exercise showing how very low reductions in survival of territorial and non-territorial birds associated with wind-farms can strongly impact population viability of long-lived species. This highlights the need for examining long-term impacts of wind-farms rather than focusing on short-term mortality, as is often promoted by power companies and some wildlife agencies. Unlike other non-natural causes of mortality difficult to eradicate or control, wind-farm fatalities can be lowered by powering down or removing risky turbines and/or farms, and by placing them outside areas critical for endangered birds. .
Predation and scavenging have been classically understood as independent processes, with predator-prey interactions and scavenger-carrion relationships occurring separately. However, the mere recognition that most predators also scavenge at variable rates, which has been traditionally ignored in food-web and community ecology, leads to a number of emergent interaction routes linking predation and scavenging. The general goal of this review is to draw attention to the main inter-specific interactions connecting predators (particularly, large mammalian carnivores), their live prey (mainly ungulates), vultures and carrion production in terrestrial assemblages of vertebrates. Overall, we report an intricate network of both direct (competition, facilitation) and indirect (hyperpredation, hypopredation) processes, and provide a conceptual framework for the future development of this promising topic in ecological, evolutionary and biodiversity conservation research. The classic view that scavenging does not affect the population dynamics of consumed organisms is questioned, as multiple indirect top-down effects emerge when considering carrion and its facultative consumption by predators as fundamental and dynamic components of food webs. Stimulating although challenging research opportunities arise from the study of the interactions among living and detrital or non-living resource pools in food webs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.