Rain fall detection has been an important factor under study in a multitude of applications: estimation of floods in order to minimize damage before an environmental risk situation, rain removal from images, agriculture field, etc. Actually, there are numerous methods implemented in order to try to solve this issue. For example, some of them are based on the traditional weather station or in the use of radar technology. In this work, we propose an approach to rain detection using image processing techniques and Convolutional Neuronal Networks (CNN). In order to improve the results of classification, images in rain and no rain conditions are pre-processed using the Sobel algorithm to detect edges. The architecture that defines the CNN is LeNet and it is carried out with three convolutional layers, three pooling layers and a soft max layer. With the proposed method, it is possible to detect the presence of rain in certain region of the image with an accuracy of 89%. The purpose of the proposed system is just to complete with a different added value, other traditional methods for detection of rain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.