The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the ‘dark’ proteome.
The effect of three operating parameters (peak temperature, pressure, and pyrolysis atmosphere) during the slow pyrolysis of three biomass sources (corn stover, vine shoots, and two-phase olive mill waste) was extensively analyzed. A 2-level full factorial design of experiments was adopted to assess the effect of the above-mentioned factors on the potential stability of biochar as well as the yields of the main pyrolysis products. To evaluate the effect of the biomass feedstock, the design was divided into three blocks (one per biomass feedstock). Results from the statistical analyses indicated that the properties of biochar related to its potential stability were mainly affected by the peak temperature and, to a lesser extent, the biomass feedstock. A significant increase in the yield of produced gas was observed when pressure was raised. This increase in the total gas yield was in part due to a higher release of CO, CH4, and H2. Using a pyrolysis atmosphere of CO2 (instead of N2) did not result in any remarkable change in neither the distribution of the pyrolysis products nor the potential stability of biochar. However, when CO2 was used as carrier gas, a significant increase in the yield of CO, at the expense of produced CO2, was observed. The findings reported herein suggest that processing biomass through pressurized slow pyrolysis under CO2 atmosphere is interesting to simultaneously obtain two valuable products: a biochar with an appropriate carbon sequestration potential, and a produced gas with an appropriate composition for energy recovery purposes.
The alkylating potential of -propiolactone (BPL), -butyrolactone (BBL), γ-butyrolactone, and δ-valerolactone, which can be formed by the in vivo nitrosation of primary amino acids, was investigated kinetically. The nucleophile NBP, 4-(p-nitrobenzyl)pyridine, a trap for alkylating agents, was used as an alkylation substrate. The alkylation reactions were performed under mimicked cellular conditions at neutral pH in water/dioxane solvent mixtures. To gain insight into the effect of the hydrolysis of lactones on their alkylating efficiency, alkylation and competing hydrolysis were studied in parallel. Conclusions were drawn as follows: (i) γ-Butyrolactone and δ-valerolactone afford neither appreciable NBP alkylation nor hydrolysis reactions; (ii) the alkylating potential of BPL is 10-fold higher than that of BBL, the reactivity of both being essentially enthalpy-controlled; (iii) a correlation was found between the alkylating potential of lactones and their carcinogenicity; (iv) the hydrolysis of lactones is not sufficiently effective to prevent alkylation; (v) the efficiency of alkylation, expressed as the alkylation rate/ hydrolysis rate ratio, decreases strongly with increasing amounts of dioxane in the reaction media; (vi) the absorption coefficients of the NBP-lactone adducts are as follows: NBP-BPL ) 5101 ( 111 M -1 cm -1 (λ ) 584 nm) and NBP-BBL ) 462 ( 19 M -1 cm -1 (λ ) 586 nm), the pronounced difference between these values being rationalized in terms of the adducts' structure; and (vii) linear correlations exist between the adducts' absorption coefficients and the water/dioxane ratio in the reaction media.
The structure of the FnIII-3,4 region of integrin β4 was solved using a hybrid approach that combines crystallographic structures, SAXS, DEER and molecular modelling. The structure helps in understanding how integrin β4 might bind to other hemidesmosomal proteins and mediate signalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.