SUMMARY
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes (T2DM). In this study, we have evaluated the role of PTP1B in the development of aging-associated obesity, inflammation and peripheral insulin resistance by assessing metabolic parameters at 3 and 16 months in PTP1B−/− mice maintained on mixed genetic background (C57Bl/6J x 129Sv/J). Whereas fat mass and adipocyte size were increased in wild-type control mice at 16 months, these parameters did not change with aging in PTP1B−/− mice. Increased levels of pro-inflammatory cytokines, crown-like structures and hypoxia-inducible factor (HIF)-1α were observed only in adipose tissue from 16-month old wild-type mice. Similarly, islet hyperplasia and hyperinsulinemia were observed in wild-type mice with aging-associated obesity, but not in PTP1B−/− animals. Leanness in 16-month old PTP-1B−/− mice was associated with increased energy expenditure. Whole body insulin sensitivity decreased in 16-month old control mice; however studies with the hyperinsulinemic-euglycemic clamp revealed that PTP1B-deficiency prevented this obesity-related decreased peripheral insulin sensitivity. At a molecular level, PTP1B expression and enzymatic activity were up-regulated in liver and muscle of 16-month old wild-type mice as were the activation of stress kinases and the expression of p53. Conversely, insulin receptor-mediated Akt/Foxo1 signaling was attenuated in these aged control mice. Collectively, these data implicate PTP1B in the development of inflammation and insulin resistance associated with obesity during aging and suggest that inhibition of this phosphatase by therapeutic strategies might protect against age-dependent T2DM.
Resveratrol improves peripheral insulin signaling independently of Sirt1 in diabetic mice in association with the inhibition of PTP1B and, therefore, this polyphenol could be an effective adjuvant for the treatment of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.