The reaction mechanism of electron transfer from the interchangeable metalloproteins plastocyanin (Pc) and cytochrome c6 (Cyt) to photooxidized P700 in photosystem I (PSI) has been studied by laser-flash absorption spectroscopy using a number of evolutionarily differentiated organisms such as cyanobacteria (Anabaena sp. PCC 7119 and Synechocystis sp. PCC 6803), green algae (Monoraphidium braunii), and higher plants (spinach). PSI reduction by Pc or Cyt shows different kinetics depending on the organism from which the photosystem and metalloproteins are isolated. According to the experimental data herein reported, three different kinetic models are proposed by assuming either an oriented collisional reaction mechanism (type I), a minimal two-step mechanism involving complex formation followed by intracomplex electron transfer (type II), or rearrangement of the reaction partners within the complex before electron transfer takes place (type III). Our findings suggest that PSI was able to first optimize its interaction with positively charged Cyt and that the evolutionary replacement of the ancestral Cyt by Pc, as well as the appearance of the fast kinetic phase in the Pc/PSI system of higher plants, would involve structural modifications in both the donor protein and PSI.
Since the first description of apoptosis four decades ago, great efforts have been made to elucidate, both in vivo and in vitro, the molecular mechanisms involved in its regulation. Although the role of cytochrome c during apoptosis is well established, relatively little is known about its participation in signaling pathways in vivo due to its essential role during respiration. To obtain a better understanding of the role of cytochrome c in the onset of apoptosis, we used a proteomic approach based on affinity chromatography with cytochrome c as bait in this study. In this approach, novel cytochrome c interaction partners were identified whose in vivo interaction and cellular localization were facilitated through bimolecular fluorescence complementation. Modeling of the complex interface between cytochrome c and its counterparts indicated the involvement of the surface surrounding the heme crevice of cytochrome c, in agreement with the vast majority of known redox adducts of cytochrome c. However, in contrast to the high turnover rate of the mitochondrial cytochrome c redox adducts, those occurring under apoptosis led to the formation of stable nucleo-cytoplasmic ensembles, as inferred mainly from surface plasmon resonance and nuclear magnetic resonance measurements, which permitted us to corroborate the formation of such complexes in vitro. The results obtained suggest that human cytochrome c interacts with pro-survival, anti-apoptotic proteins following its release into the cytoplasm. Thus, cytochrome c may interfere with cell survival pathways and unlock apoptosis in order to prevent the spatial and temporal coexistence of antagonist signals. Molecular & Cellular
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.