The uniform energy distribution of top-hat laser beams is a very attractive property that can offer some advantages compared to Gaussian beams. Especially, the desired intensity distribution can be achieved at the laser spot through energy redistribution across the beam spatial profile and, thus, to minimize and even eliminate some inherent shortcomings in laser micro-processing. This paper reports an empirical study that investigates the effects of top-hat beam processing in micro-structuring and compares the results with those obtainable with a conventional Gaussian beam. In particular, a refractive field mapping beam shaper was used to obtain a top-hat profile and the effects of different scanning strategies, pulse energy settings, and accumulated fluence, i.e., hatch and pulse distances, were investigated. In general, the top-hat laser processing led to improvements in surface and structuring quality. Especially, the taper angle was reduced while the surface roughness and edge definition were also improved compared to structures produced with Gaussian beams. A further decrease of the taper angle was achieved by combining hatching with some outlining beam passes. The scanning strategies with only outlining beam passes led to very high ablation rates but in expense of structuring quality. Improvements in surface roughness were obtained with a wide range of pulse energies and pulse and hatch distances when top-hat laser processing was used.
The transformation by a lens of a polychromatic laser beam composed of on-axis superposed monochromatic TEM00 Gaussian modes in the paraxial approximation is studied. The chromatic aberrations are described by allowing the waist position on the z axis and the Rayleigh range to depend on wavelength. The beam radius, the far-field divergence, the Rayleigh range, the beam product, the beam propagation factor, and the kurtosis parameter are calculated. The relationship between the fourth-order and the second-order moments of Hermite-Gaussian and Laguerre-Gaussian modes is obtained and is used for calculating kurtosis parameter. The results are generalized to polychromatic modes of higher orders. It is shown that the on-axis superposition of monochromatic TEM00 modes with no chromatic aberration is leptokurtic.
Ultrafast lasers micromachining results depend on both the processing parameters and the material properties. The obtained thermal effects are negligible if a good combination of processing parameters is chosen. However, optimizing the processing parameters leading to the required surface quality on a given material can be quite complex and time consuming. We developed a semi-empirical model to estimate the heat accumulation on a surface as a function of the laser fluence, scanning speed and repetition rate. The simulation results were correlated with experimental ones on different materials, and compared with the transient temperature distributions calculated using an analytical solution to the heat transfer equation. The predictions of the proposed model allow evaluating the heat distribution on the surface, as well as optimizing the ultrafast laser micromachining strategy, yielding negligible thermal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.