In this work, we explore the synthesis of layered double hydroxide (LDH) particles containing different molar ratios of Gd3+ and Dy3+ cations. A single crystalline phase was obtained for Zn2.0Al0.75Gd0.125Dy0.125-LDH and Zn2.0Al0.5Gd0.25Dy0.25-LDH, and their efficiency as contrast agents was evaluated by T1- and T2-weighted magnetic resonance imaging (MRI). Both GdDy-LDHs exhibited longitudinal relaxivity (r1) higher than a commercial reference. The highest contrast in the T1 mode was achieved with the Zn2.0Al0.75Gd0.125Dy0.125-LDH, which contained the lowest concentration of lanthanides; this efficiency is related to the lowest amount of carbonate anions complexing the lanthanide sites. On the contrary, the best contrast in the T2 mode was achieved with Zn2.0Al0.5Gd0.25Dy0.25-LDH. Zn2.0Al0.75Gd0.125Dy0.125-LDH and Zn2.0Al0.5Gd0.25Dy0.25-LDH presented r2/r1 ratios of 7.9 and 22.5, respectively, indicating that the inclusion of gadolinium and dysprosium into layered structures is a promising approach to the development of efficient bimodal (T1/T2) MRI contrast agents.
The removal of arsenate ions from aqueous solutions at near-neutral pH was carried out using chitosan-magnetite (ChM) hydrogel beads in batch systems. Equilibrium isotherms and kinetic studies are reported. Obtained equilibrium and kinetic data were fitted to mathematical models, estimating model parameters by non-linear regression analysis. Langmuir model was found to best fit equilibrium data; a maximum adsorption capacity of 66.9 mg As/g was estimated at pH 7.0. Pseudo-first order kinetic model was observed to best fit kinetic data. The pH of the solution was observed to increase with increasing contact time, which is attributed to protonation of amine groups present in the hydrogel. Protonation of functional groups in the ChM sorbent yields a higher number of active sites for arsenate removal, being as this a process that can’t be overlooked in future applications of ChM hydrogel for the removal or arsenate ions. Chitosan-magnetite and ChM-arsenate interactions were determined by XPS. Arsenate removal using fixed-bed column packed with ChM was carried out, reporting a non-ideal behavior attributed to pH increase of the effluent caused by proton transfer to ChM hydrogels.
The stoichiometry of the components of hexacyanoferrate materials affecting their final porosity properties and applications in CO2 capture is an issue that is rarely studied. In this work, the effect that stoichiometry of all element components and oxidation states of transition metals has on the structures of mesoporous K or Na-cobalt hexacyanoferrates (CoHCFs) and CO2 removal is reported. A series of CoHCFs model systems are synthesized using the co-precipitation method with varying amounts of Co ions. CoHCFs are characterized by N2 adsorption, TGA, FTIR-ATR, XRD, and XPS. N2 adsorption results reveal a more developed external surface area (72.69–172.18 m2/g) generated in samples containing mixtures of K+/Fe2+/Fe3+ ions (system III) compared to samples with Na+/Fe2+ ions (systems I, II). TGA results show that the porous structure of CoHCFs is affected by Fe and Co ions oxidation states, the number of water molecules, and alkali ions. The formation of two crystalline cells (FCC and triclinic) is confirmed by XRD results. Fe and Co oxidation states are authenticated by XPS and allow for the confirmation of charges involved in the stabilization of CoCHFs. CO2 removal capacities (3.04 mmol/g) are comparable with other materials reported. CO2 adsorption kinetics is fast (3–6 s), making CoHCFs attractive for continuous operations. Qst (24.3 kJ/mol) reveals a physical adsorption process. Regeneration effectiveness for adsorption/desorption cycles indicates ~1.6% loss and selectivity (~47) for gas mixtures (CO2:N2 = 15:85). The results of this study demonstrate that the CoHCFs have practical implications in the potential use of CO2 capture and flue gas separations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.