This paper proposes a novel similarity measure between vector sequences. We work in the framework of model-based approaches, where each sequence is first mapped to a Hidden Markov Model (HMM) and then a measure of similarity is computed between the HMMs. We propose to model sequences with semicontinuous HMMs (SC-HMMs). This is a particular type of HMM whose emission probabilities in each state are mixtures of shared Gaussians. This crucial constraint provides two major benefits. First, the a priori information contained in the common set of Gaussians leads to a more accurate estimate of the HMM parameters. Second, the computation of a similarity between two SC-HMMs can be simplified to a Dynamic Time Warping (DTW) between their mixture weight vectors, which significantly reduces the computational cost. Experiments are carried out on a handwritten word retrieval task in three different datasets-an in-house dataset of real handwritten letters, the George Washington dataset, and the IFN/ENIT dataset of Arabic handwritten words. These experiments show that the proposed similarity outperforms the traditional DTW between the original sequences, and the model-based approach which uses ordinary continuous HMMs. We also show that this increase in accuracy can be traded against a significant reduction of the computational cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.