Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in ageing individuals. It is now clear that genetic susceptibility and environmental factors play a role in disease etiology and progression. Because environmental factors are involved with the majority of the cases of PD, it is important to understand the role nutrition plays in both neuroprotection and neurodegeneration. Recent epidemiological studies have revealed the promise of some nutrients in reducing the risk of PD. In contrast, other nutrients may be involved with the etiology of neurodegeneration or exacerbate disease progression. This review summarizes the studies that have addressed these issues and describes in detail the nutrients and their putative mechanisms of action in PD.
Diagnosis of Parkinson’ disease (PD) carries a high misdiagnosis rate due to failure to recognize atypical parkinsonian disorders (APD). Usually by the time of diagnosis greater than 60% of the neurons in the substantia nigra are dead. Therefore, early detection would be beneficial so that therapeutic intervention may be initiated early in the disease process. We used splice variant-specific microarrays to identify mRNAs whose expression is altered in peripheral blood of early-stage PD patients compared to healthy and neurodegenerative disease controls. Quantitative polymerase chain reaction assays were used to validate splice variant transcripts in independent sample sets. Here we report a PD signature used to classify blinded samples with 90% sensitivity and 94% specificity and an APD signature that resulted in a diagnosis with 95% sensitivity and 94% specificity. This study provides the first discriminant functions with coherent diagnostic signatures for PD and APD. Analysis of the PD biomarkers identified a regulatory network with nodes centered on the transcription factors HNF4A and TNF, which have been implicated in insulin regulation.
Environmental and genetic factors are likely to be involved in the pathogenesis of Parkinson's disease (PD), the second most prevalent neurodegenerative disease among the elderly. Networkbased metaanalysis of four independent microarray studies identified the hepatocyte nuclear factor 4 alpha (HNF4A), a transcription factor associated with gluconeogenesis and diabetes, as a central regulatory hub gene up-regulated in blood of PD patients. In parallel, the polypyrimidine tract binding protein 1 (PTBP1), involved in the stabilization and mRNA translation of insulin, was identified as the most down-regulated gene. Quantitative PCR assays revealed that HNF4A and PTBP1 mRNAs were upand down-regulated, respectively, in blood of 51 PD patients and 45 controls nested in the Diagnostic and Prognostic Biomarkers for Parkinson's Disease. These results were confirmed in blood of 50 PD patients compared with 46 healthy controls nested in the Harvard Biomarker Study. Relative abundance of HNF4A mRNA correlated with the Hoehn and Yahr stage at baseline, suggesting its clinical utility to monitor disease severity. Using both markers, PD patients were classified with 90% sensitivity and 80% specificity. Longitudinal performance analysis demonstrated that relative abundance of HNF4A and PTBP1 mRNAs significantly decreased and increased, respectively, in PD patients during the 3-y followup period. The inverse regulation of HNF4A and PTBP1 provides a molecular rationale for the altered insulin signaling observed in PD patients. The longitudinally dynamic biomarkers identified in this study may be useful for monitoring disease-modifying therapies for PD.Parkinson's disease | HNF4A | PTBP1 | network analysis | blood biomarkers S ubstantial efforts have been devoted to the development of diagnostic strategies for Parkinson's disease (PD). In particular, changes in mRNA from cellular whole blood can facilitate the identification of dysregulated processes and diagnostic biomarkers for PD (1, 2). Several molecular signatures in blood have been identified. For example, 22 unique genes were found differentially expressed in blood of PD patients compared with healthy controls (1). Likewise, specific splice variants in blood were associated with PD in samples obtained from two independent clinical trials (2, 3). In addition, altered expression of the vitamin D receptor (VDR) in blood and reduced plasma levels of 25-hydroxy vitamin D 3 have been associated with PD (1, 4). Furthermore, plasma levels of the epidermal growth factor have been associated with cognitive decline in PD (5).Environmental stressors and genetic factors are most likely involved in the pathogenesis of PD. Among the genetic factors associated with PD, mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are the most common cause of autosomal dominant PD (6) and a considerable risk factor in idiopathic forms of the disease (7,8). Given the complex interaction between environmental and genetic factors in sporadic PD, we integrated four independent microarray s...
A wide range of comorbid diseases is associated with Alzheimer's disease (AD), the most common neurodegenerative disease worldwide. Evidence from clinical and molecular studies suggest that chronic diseases, including diabetes, cardiovascular disease, depression, and inflammatory bowel disease, may be associated with an increased risk of AD in different populations. Disruption in several shared biological pathways has been proposed as the underlying mechanism for the association between AD and these comorbidities. Notably, inflammation is a common dysregulated pathway shared by most of the comorbidities associated with AD. Some drugs commonly prescribed to patients with diabetes and cardiovascular disease have shown promising results in AD patients. Systems-based biology studies have identified common genetic factors and dysregulated pathways that may explain the relationship of comorbid disorders in AD. Nonetheless, the precise mechanisms for the occurrence of disease comorbidities in AD are not entirely understood. Here, we discuss the impact of the most common comorbidities in the clinical management of AD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.