Ambient Assisted Working (AAW) is a discipline aiming to provide comfort and safety in the workplace through customization and technology. Workers' comfort may be compromised in many labor situations, including those depending on environmental conditions, like extremely hot weather conduces to heat stress. Occupational heat stress (OHS) happens when a worker is in an uninterrupted physical activity and in a hot environment. OHS can produce strain on the body, which leads to discomfort and eventually to heat illness and even death. Related ISO standards contain methods to estimate OHS and to ensure the safety and health of workers, but they are subjective, impersonal, performed a posteriori and even invasive. This paper focuses on the design and development of real-time personalized monitoring for a more effective and objective estimation of OHS, taking into account the individual user profile, fusing data from environmental and unobtrusive body sensors. Formulas employed in this work were taken from different domains and joined in the method that we propose. It is based on calculations that enable continuous surveillance of physical activity performance in a comfortable and healthy manner. In this proposal, we found that OHS can be estimated by satisfying the following criteria: objective, personalized, in situ, in real time, just in time and in an unobtrusive way. This enables timely notice for workers to make decisions based on objective information to control OHS.
Knowing the perceived exertion of workers during their physical activities facilitates the decision-making of supervisors regarding the worker allocation in the appropriate job, actions to prevent accidents, and reassignment of tasks, among others. However, although wearable heart rate sensors represent an effective way to capture perceived exertion, ergonomic methods are generic and they do not consider the diffuse nature of the ranges that classify the efforts. Personalized monitoring is needed to enable a real and efficient classification of perceived individual efforts. In this paper, we propose a heart rate-based personalized method to assess perceived exertion; our method uses fuzzy logic as an option to manage imprecision and uncertainty in involved variables. We applied some experiments to cleaning staff and obtained results that highlight the importance of a custom method to classify perceived exertion of people doing physical work.
Artificial Neural Networks (ANNs) were created inspired by the neural networks in the human brain and have been widely applied in speech processing. The application areas of ANN include: Speech recognition, speech emotion recognition, language identification, speech enhancement, and speech separation, amongst others. Likewise, given that speech processing performed by humans involves complex cognitive processes known as auditory attention, there has been a growing amount of papers proposing ANNs supported by deep learning algorithms in conjunction with some mechanism to achieve symmetry with the human attention process. However, while these ANN approaches include attention, there is no categorization of attention integrated into the deep learning algorithms and their relation with human auditory attention. Therefore, we consider it necessary to have a review of the different ANN approaches inspired in attention to show both academic and industry experts the available models for a wide variety of applications. Based on the PRISMA methodology, we present a systematic review of the literature published since 2000, in which deep learning algorithms are applied to diverse problems related to speech processing. In this paper 133 research works are selected and the following aspects are described: (i) Most relevant features, (ii) ways in which attention has been implemented, (iii) their hypothetical relationship with human attention, and (iv) the evaluation metrics used. Additionally, the four publications most related with human attention were analyzed and their strengths and weaknesses were determined.
In this paper, a sensor network architecture is presented. This work proposes an early warning system for river overflows. The sensor network consists of a river level sensor node that measures the distance between the sensor and the mass of water using a precision ultrasonic sensor. The recorded information is transmitted to a receiving node by radio frequency (915 MHz) using LoRa modulation. The receiving node is implemented in a Raspberry Pi, it processes the information in real time and publishes the alert using a social network (Twitter). Finally, a prototype of the river level node was tested, obtaining a measurement range from 20 cm to 2 m. The receiving node was located 500 m away from the sensor node, that received the data packets sent without loss of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.