Langmuir monolayers can be assembled from molecules that change from a low-energy orientation occupying a large cross-sectional area to a high-energy orientation of small cross-sectional area as the lateral pressure grows. Examples include cyclosporin A, amphotericin B, nystatin, certain alpha-helical peptides, cholesterol oxydation products, dumbbell-shaped amphiphiles, organic–inorganic nanoparticles and hybrid molecular films. The transition between the two orientations leads to a shoulder in the surface pressure-area isotherm. We propose a theoretical model that describes the shoulder and can be used to extract the energy cost per molecule for the reorientation. Our two-state model is based on a lattice–sublattice approximation that hosts the two orientations and a corresponding free energy expression which we minimize with respect to the orientational distribution. Inter-molecular interactions other than steric repulsion are ignored. We provide an analysis of the model, including an analytic solution for one specific lateral pressure near a point of inflection in the surface pressure-area isotherm, and an approximate solution for the entire range of the lateral pressures. We also use our model to estimate energy costs associated with orientational transitions from previously reported experimental surface pressure-area isotherms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.