Nowadays, bearings installed in industrial electric motors are constituted as the primary mode of a failure affecting the global energy consumption. Since industries’ energy demand has a growing tendency, interest for efficient maintenance in electric motors is decisive. Vibration signals from bearings are employed commonly as a non-invasive approach to support fault diagnosis and severity evaluation of rotating machinery. However, vibration-based diagnosis poses a challenge concerning the signal properties, e.g., highly dynamic and non-stationary. Here, we introduce a knowledge-based tool to analyze multiple health conditions in bearings. Our approach includes a stochastic feature selection method, termed Stochastic Feature Selection (SFS), highlighting and interpreting relevant multi-domain attributes (time, frequency, and time–frequency) related to the bearing faults discriminability. In particular, a relief-F-based ranking and a Hidden Markov Model are trained under a windowing scheme to achieve our SFS. Obtained results in a public database demonstrate that our proposal is competitive compared to state-of-the-art algorithms concerning both the number of features selected and the classification accuracy.
Bayesian statistical inference under unknown or hard to asses likelihood functions is a very challenging task. Currently, approximate Bayesian computation (ABC) techniques have emerged as a widely used set of likelihood-free methods. A vast number of ABC-based approaches have appeared in the literature; however, they all share a hard dependence on free parameters selection, demanding expensive tuning procedures. In this paper, we introduce an automatic kernel learning-based ABC approach, termed AKL-ABC, to automatically compute posterior estimations from a weighting-based inference. To reach this goal, we propose a kernel learning stage to code similarities between simulation and parameter spaces using a centered kernel alignment (CKA) that is automated via an Information theoretic learning approach. Besides, a local neighborhood selection (LNS) algorithm is used to highlight local dependencies over simulations relying on graph theory. Attained results on synthetic and real-world datasets show our approach is a quite competitive method compared to other non-automatic state-of-the-art ABC techniques.
Condition monitoring of Internal Combustion Engines (ICE) benefits cost-effective operations in the modern industrial sector. Because of this, vibration signals are commonly monitored as part of a non-invasive approach to ICE analysis. However, vibration-based ICE monitoring poses a challenge due to the properties of this kind of signals. They are highly dynamic and non-stationary, let alone the diverse sources involved in the combustion process. In this paper, we propose a feature relevance estimation strategy for vibration-based ICE analysis. Our approach is divided into three main stages: signal decomposition using an Ensemble Empirical Mode Decomposition algorithm, multi-domain parameter estimation from time and frequency representations, and a supervised feature selection based on the Relief-F technique. Accordingly, we decomposed the vibration signals by using self-adaptive analysis to represent nonlinear and non-stationary time series. Afterwards, time and frequency-based parameters were calculated to code complex and/or non-stationary dynamics. Subsequently, we computed a relevance vector index to measure the contribution of each multi-domain feature to the discrimination of different fuel blend estimation/diagnosis categories for ICE. In particular, we worked with an ICE dataset collected from fuel blends under normal and fault scenarios at different engine speeds to test our approach. Our classification results presented nearly 98% of accuracy after using a k-Nearest Neighbors machine. They reveal the way our approach identifies a relevant subset of features for ICE condition monitoring. One of the benefits is the reduced number of parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.