Key message Local adaptation largely segregates between traits affecting light responses and water relations, but population-level differences in stomatal conductance when growth is unconstrained converge among populations under water stress. Abstract Warming temperatures and altered precipitation patterns threaten plant populations worldwide. European beech (Fagus sylvatica) is a species that expresses both high phenotypic plasticity and local adaptation among populations. Beech seedlings’ susceptibility to prolonged drought may be dictated by their immediate light environment. We tested whether seedlings of four beech provenances, from contrasting edaphoclimatic environments, expressed differences in trait responses to imposed water stress under sun and shade treatments. Populations from the southern range margin were expected to display greater water-stress tolerance and core populations’ faster growth rates in the absence of abiotic limitations. Both high light and water stress induced differences in trait responses among provenances, but traits that failed to respond to our experimental treatments likewise did not segregate at the provenance level. Hence, those traits responding to light, e.g., increasing leaf flavonol index and leaf mass area, also tended to differ among provenances. Similarly, there was evidence of local adaptation among provenances in traits, like midday leaf water potential, responding to water stress. Exceptionally, there was a three way interaction water- × -light- × -provenance for stomatal conductance which converged among provenances under water stress. Leaf chlorophyll content also varied both with light and water in a provenance-specific manner. We found core provenances’ growth traits to outperform others under favourable conditions, whereas southern and high-elevation populations displayed traits adapted to tolerate high irradiance. Only stomatal conductance produced a complementary interactive response between light- × -water across provenances, whereas other traits responded less to combined water stress and high irradiance than to either treatment alone.
In Mediterranean-type ecosystems, drought is considered the main ecological filter for seedling establishment. The evergreen oaks Quercus ilex L. and Quercus suber L. are two of the most abundant tree species in the Mediterranean Basin. Despite their shared evergreen leaf habit and ability to resist low soil water potentials, traditionally it has been suggested that Q. ilex is better suited to resist dry conditions than Q. suber. In this study, we examined how seedlings of Q. ilex and Q. suber grown in sandy soils responded to different levels of water availability using natural dry conditions and supplemental watering. Specifically, we estimated survival and water status of seedlings and explored the role of acorn mass and belowground biomass in seedling performance. To our surprise, Q. suber was better able to survive the summer drought in our experiment than Q. ilex. Nearly 55% of the Q. suber seedlings remained alive after a 2-month period without rain or supplemental water, which represents almost 20% higher survival than Q. ilex over the same period. At the end of the dry period, the surviving seedlings of Q. suber had strikingly higher water potential, potential maximum quantum yield of photosystem II (Fv/Fm) and stomatal conductance (gs) than those of Q. ilex. Acorn mass was associated with the probability of survival under dry conditions; however, it did not explain the differences in survival or water status between the species. In contrast, Q. suber had a higher root ratio and root:shoot ratio than Q. ilex and these traits were positively associated with predawn leaf water potential, Fv/Fm, gs and survival. Taken together, our results suggest that the higher relative investment in roots by Q. suber when growing in a sandy acidic substrate allowed this species to maintain better physiological status and overall condition than Q. ilex, increasing its probability of survival in dry conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.