Molecular dynamics simulations have been performed to study the liquid–vapor equilibrium of water as a function of temperature. The orthobaric densities and the surface tension of water are reported for temperatures from 316 K until 573 K. The extended simple point charge (SPC/E) interaction potential for water molecules is used with full Ewald summation. The normal and tangential components of the pressure tensor were calculated and are presented at 328 K. The nature of the long-range contribution to the surface tension has been studied in detail. At 328 K the calculated surface tension is 66.0±3.0 mN m−1 in comparison with the experimental value of 67 mN m−1. The simulated surface tensions between 316 K and 573 K are in good agreement with experiment. The orthobaric densities are in better agreement with experimental values than those obtained from the Gibbs ensemble calculation for the SPC model of water.
Canonical molecular dynamics ͑MD͒ and Monte Carlo ͑MC͒ simulations for liquid/vapor equilibrium in truncated Lennard-Jones fluid have been carried out. Different results for coexistence properties ͑orthobaric densities, normal and tangential pressure profiles, and surface tension͒ have been reported in each method. These differences are attributed in literature to different set up conditions, e.g., size of simulation cell, number of particles, cutoff radius, time of simulations, etc., applied by different authors. In the present study we show that observed disagreement between simulation results is due to the fact that different authors inadvertently simulated different model fluids. The origin of the problem lies in details of truncation procedure used in simulation studies. Care has to be exercised in doing the comparison between both methods because in MC calculations one deals with the truncated potential, while in MD calculations one uses the truncated forces, i.e., derivative of the potential. The truncated force does not uniquely define the primordial potential. It results in MD and MC simulations being performed for different potential models. No differences in the coexistence properties obtained from MD and MC simulations are found when the same potential model is used. An additional force due to the discontinuity of the truncated potential at cutoff distance becomes crucial for inhomogeneous fluids and has to be included into the virial calculations in MC and MD, and into the computation of trajectories in MD simulations. The normal pressure profile for the truncated potential is constant through the interface and both vapor and liquid regions only when this contribution is taken into account, and ignoring it results in incorrect value of surface tension.
The electrostatic interactions in dissipative particle dynamics (DPD) simulations are calculated using the standard Ewald [Ann. Phys. 64, 253 (1921)] sum method. Charge distributions on DPD particles are included to prevent artificial ionic pair formation. This proposal is an alternative method to that introduced recently by Groot [J. Chem. Phys. 118, 11265 (2003)] where the electrostatic field was solved locally on a lattice. The Ewald method is applied to study a bulk electrolyte and polyelectrolyte-surfactant solutions. The structure of the fluid is analyzed through the radial distribution function between charged particles. The results are in good agreement with those reported by Groot for the same systems. We also calculated the radius of gyration of a polyelectrolyte in salt solution as a function of solution pH and degree of ionization of the chain. The radius of gyration increases with the net charge of the polymer in agreement with the trend found in static light scattering experiments of polystyrene sulfonate solutions.
The static dielectric constant at room temperature and the temperature of maximum density are used as target properties to develop, by molecular dynamics simulations, the TIP4P/ε force field of water. The TIP4P parameters are used as a starting point. The key step, to determine simultaneously both properties, is to perform simulations at 240 K where a molecular dipole moment of minimum density is found. The minimum is shifted to larger values of μ as the distance between the oxygen atom and site M, lOM, decreases. First, the parameters that define the dipole moment are adjusted to reproduce the experimental dielectric constant and then the Lennard-Jones parameters are varied to match the temperature of maximum density. The minimum on density at 240 K allows understanding why reported TIP4P models fail to reproduce the temperature of maximum density, the dielectric constant, or both properties. The new model reproduces some of the thermodynamic and transport anomalies of water. Additionally, the dielectric constant, thermodynamics, and dynamical and structural properties at different temperatures and pressures are in excellent agreement with experimental data. The computational cost of the new model is the same as that of the TIP4P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.