IntroductionEarlier small case series and clinical observations reported on chronic pain playing an important role in facioscapulohumeral dystrophy (FSHD). The aim of this study was to determine the characteristics and impact of pain on quality of life (QoL) in patients with FSHD.MethodsWe analyzed patient reported outcome measures collected through the U.K. FSHD Patient Registry.ResultsOf 398 patients, 88.6% reported pain at the time of study. The most frequent locations were shoulders and lower back. A total of 203 participants reported chronic pain, 30.4% of them as severe. The overall disease impact on QoL was significantly higher in patients with early onset and long disease duration. Chronic pain had a negative impact on all Individualised Neuromuscular Quality of Life Questionnaire domains and overall disease score.DiscussionOur study shows that pain in FSHD type 1 (FSHD1) is frequent and strongly impacts on QoL, similar to other chronic, painful disorders. Management of pain should be considered when treating FSHD1 patients. Muscle Nerve 57: 380–387, 2018
GNE myopathy is an ultra-rare autosomal recessive disease, which starts as a distal muscle weakness and ultimately leads to a wheelchair bound state. Molecular research and animal modelling significantly moved forward understanding of GNE myopathy mechanisms and suggested therapeutic interventions to alleviate the symptoms. Multiple therapeutic attempts are being made to supplement sialic acid depleted in GNE myopathy muscle cells. Translational research field provided valuable knowledge through natural history studies, patient registries and clinical trial, which significantly contributed to bringing forward an era of GNE myopathy treatment. In this review, we are summarising current GNE myopathy, scientific trends and open questions, which would be of significant interest for a wide neuromuscular diseases community.
SIL1 acts as a co-chaperone for the major ER-resident chaperone BiP and thus plays a role in many BiP-dependent cellular functions such as protein-folding control and unfolded protein response. Whereas the increase of BiP upon cellular stress conditions is a well-known phenomenon, elevation of SIL1 under stress conditions was thus far solely studied in yeast, and different studies indicated an adverse effect of SIL1 increase. This is seemingly in contrast with the beneficial effect of SIL1 increase in surviving neurons in neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer's disease. Here, we addressed these controversial findings. Applying cell biological, morphological and biochemical methods, we demonstrated that SIL1 increases in various mammalian cells and neuronal tissues upon cellular stress. Investigation of heterozygous SIL1 mutant cells and tissues supported this finding. Moreover, SIL1 protein was found to be stabilized during ER stress. Increased SIL1 initiates ER stress in a concentration-dependent manner which agrees with the described adverse SIL1 effect. However, our results also suggest that protective levels are achieved by the secretion of excessive SIL1 and GRP170 and that moderately increased SIL1 also ameliorates cellular fitness under stress conditions. Our immunoprecipitation results indicate that SIL1 might act in a BiP-independent manner. Proteomic studies showed that SIL1 elevation alters the expression of proteins including crucial players in neurodegeneration, especially in Alzheimer's disease. This finding agrees with our observation of increased SIL1 immunoreactivity in surviving neurons of Alzheimer's disease autopsy cases and supports the assumption that SIL1 plays a protective role in neurodegenerative disorders.
BackgroundCaveolin-3 (CAV3) is a muscle-specific protein localized to the sarcolemma. It was suggested that CAV3 is involved in the connection between the extracellular matrix (ECM) and the cytoskeleton. Caveolinopathies often go along with increased CK levels indicative of sarcolemmal damage. So far, more than 40 dominant pathogenic mutations have been described leading to several phenotypes many of which are associated with a mis-localization of the mutant protein to the Golgi. Golgi retention and endoplasmic reticulum (ER) stress has been demonstrated for the CAV3 p.P104L mutation, but further downstream pathophysiological consequences remained elusive so far.MethodsWe utilized a transgenic (p.P104L mutant) mouse model and performed proteomic profiling along with immunoprecipitation, immunofluorescence and immunoblot examinations (including examination of α-dystroglycan glycosylation), and morphological studies (electron and coherent anti-Stokes Raman scattering (CARS) microscopy) in a systematic investigation of molecular and subcellular events in p.P104L caveolinopathy.ResultsOur electron and CARS microscopic as well as immunological studies revealed Golgi and ER proliferations along with a build-up of protein aggregates further characterized by immunoprecipitation and subsequent mass spectrometry. Molecular characterization these aggregates showed affection of mitochondrial and cytoskeletal proteins which accords with our ultra-structural findings. Additional global proteomic profiling revealed vulnerability of 120 proteins in diseased quadriceps muscle supporting our previous findings and providing more general insights into the underlying pathophysiology. Moreover, our data suggested that further DGC components are altered by the perturbed protein processing machinery but are not prone to form aggregates whereas other sarcolemmal proteins are ubiquitinated or bind to p62. Although the architecture of the ER and Golgi as organelles of protein glycosylation are altered, the glycosylation of α-dystroglycan presented unchanged.ConclusionsOur combined data classify the p.P104 caveolinopathy as an ER-Golgi disorder impairing proper protein processing and leading to aggregate formation pertaining proteins important for mitochondrial function, cytoskeleton, ECM remodeling and sarcolemmal integrity. Glycosylation of sarcolemmal proteins seems to be normal. The new pathophysiological insights might be of relevance for the development of therapeutic strategies for caveolinopathy patients targeting improved protein folding capacity.Electronic supplementary materialThe online version of this article (10.1186/s13395-018-0173-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.