The Dry Chaco is mostly known as a forested ecosystem. However it includes natural grasslands, savannas, scrublands, and wetlands. With one of the highest global deforestation rates in the last two decades and only 12% of the area protected, the concern about land-use change in this ecoregion has raised exponentially; but conservation initiatives developed in last years almost exclusively targeted forests whereas natural grasslands and savannas remain as neglected ecosystem within scientific and governmental agendas. While currently the distribution of natural grassland and savanna area encompasses over 20,000 km 2 , historical records and spatial models indicate that natural grassland and savannas were more widespread in pre-European era. Two main reasons drove this reduction in natural grasslands and savannas: woody encroachment by fire suppression and overgrazing, and conversion to agriculture and implanted pastures. In this article, through a combination of analyzes and bibliographic revisions, we describe biotic and abiotic components of natural grassland and savannas of the Dry Chaco. We also present the current distribution and conservation status of these ecosystems, and describe the process of change and the ecological consequences for biogeochemical cycles and biologic interactions. To provide basis for management, we estimate current grazing stocking rates on natural grasslands and savannas of Argentine Dry Chaco and we propose an alternative approach to sustainably intensify the use of these ecosystems and improve cattle rancher livelihoods. Despite the existent knowledge about natural grasslands and savannas in the region, we believe that is necessary to motivate the scientific community and national institutions to increase efforts to reconcile the restoration and conservation of these particular rangelands.
Impacts of cattle production vary among different production systems, but data on their distribution is scarce for most world regions. In this work, we combine datasets on cattle vaccination locations and land cover in a regression framework to define and map major cattle production systems in the Argentinean Dry Chaco. We also explore how cattle occurrence relates to spatial determinants. Results indicate that the region harbors about 5.5 million heads. Cattle density was mainly described by the share of pasture (69.9%), cropland (28.1%) and aridity (23.8%). We identified 12-major cattle production systems: six cow-calf, three whole-cycle, and three fattening systems. Of these, four systems had high woodland cover (>85%). Data generated is available in a website. Understanding the distribution of cattle production systems is important to assess the environmental impacts of beef production at broad scales. Integrating vaccination data with land-cover information provides a promising avenue to identify livestock systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.