In large civil aircraft manufacturing, a time-consuming post-production process is the non-destructive inspection of wing panels. This work aims to address this challenge and improve the defects’ detection by performing automated aerial inspection using a small off-the-shelf multirotor. The UAV is equipped with a wide field-of-view camera and an ultraviolet torch for implementing non-invasive imaging inspection. In particular, the UAV is programmed to perform the complete mission and stream video, in real-time, to the ground control station where the defects’ detection algorithm is executed. The proposed platform was mathematically modelled in MATLAB/SIMULINK in order to assess the behaviour of the system using a path following method during the aircraft wing inspection. In addition, two defect detection algorithms were implemented and tested on a dataset containing images obtained during inspection at Airbus facilities. The results show that for the current dataset the proposed methods can identify all the images containing defects.
In large civil aircraft manufacturing a timeconsuming post-production process is the non-destructive inspection of wing panels. This work aims to address this challenge and improve the defects' detection by performing automated aerial inspection using a small off-the-shelf multirotor. The UAV is equipped with a wide field-of-view camera and an ultraviolet torch for implementing non-invasive imaging inspection. In particular, the UAV is programmed to perform the complete mission and stream video, in real-time, to the ground control station where the defects' detection algorithm is executed. The proposed platform was mathematically modelled in MATLAB/SIMULINK in order to assess the behaviour of the system using a path following method during the aircraft wing inspection. The UAV was tested in the lab where a six-meter-long wing panel was oneside inspected. Initial results indicate that this inspection method could reduce significantly the inspection time, cost, and workload, whilst potentially increasing the probability of detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.