In this work, a photo-polymerization route was used to obtain potassium acrylate-co-acrylamide hydrogels with enhanced mechanical properties, well-defined microstructures in the dry state, and unique meso- and macrostructures in the hydrated state. The properties of the hydrogels depended on the concentration of the crosslinking agent. Mechanical properties, swelling capacity, and morphology were analyzed, showing a well-defined transition at a critical concentration of the crosslinker. In terms of morphology, shape-evolving surface patterns appeared at different scales during swelling. These surface structures had a noticeable influence on the mechanical properties. Hydrogels with structures exhibited better mechanical properties compared to unstructured hydrogels. The critical crosslinking concentration reported in this work (using glycerol diacrylate) is a reference point for the future preparation of multistructured acrylic hydrogel with enhanced properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.