To better understand the potential of drug repurposing in COVID-19, we analyzed control strategies over essential host factors for SARS-CoV-2 infection. We constructed comprehensive directed protein–protein interaction (PPI) networks integrating the top-ranked host factors, the drug target proteins and directed PPI data. We analyzed the networks to identify drug targets and combinations thereof that offer efficient control over the host factors. We validated our findings against clinical studies data and bioinformatics studies. Our method offers a new insight into the molecular details of the disease and into potentially new therapy targets for it. Our approach for drug repurposing is significant beyond COVID-19 and may be applied also to other diseases.
Motivation There is an increasing amount of data coming from genome-wide studies identifying disease-specific survivability-essential proteins and host factors critical to a cell becoming infected. Targeting such proteins has a strong potential for targeted, precision therapies. Typically however, too few of them are drug targetable. An alternative approach is to influence them through drug targetable proteins upstream of them. Structural target network controllability is a suitable solution to this problem. It aims to discover suitable source nodes (e.g., drug targetable proteins) in a directed interaction network that can control (through a suitable set of input functions) a desired set of targets. Results We introduce NetControl4BioMed, a free open-source web-based application that allows users to generate or upload directed protein-protein interaction networks and to perform target structural network controllability analyses on them. The analyses can be customized to focus the search on drug targetable source nodes, thus providing drug therapeutic suggestions. The application integrates protein data from HGNC, Ensemble, UniProt, NCBI, and InnateDB, directed interaction data from InnateDB, Omnipath, and SIGNOR, cell-line data from COLT and DepMap, and drug-target data from DrugBank. Availability The application and data are available online at https://netcontrol.combio.org/. The source code is available at https://github.com/Vilksar/NetControl4BioMed under an MIT license.
Network controllability focuses on the concept of driving the dynamical system associated to a directed network of interactions from an arbitrary initial state to an arbitrary final state, through a well-chosen set of input functions applied in a minimal number of so-called input nodes. In earlier studies we and other groups demonstrated the potential of applying this concept in medicine. A directed network of interactions may be built around the main known drivers of the disease being studied, and then analysed to identify combinations of drug targets controlling survivability-essential genes in the network. This paper takes the next step and focuses on patient data. We demonstrate that comprehensive protein-protein interaction networks can be built around patient genetic data, and that network controllability can be used to identify possible personalised drug combinations. We discuss the algorithmic methods that can be used to construct and analyse these networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.