Differences in the nature and quantity of sediment filling oxbow lakes have significant implications for the evolution of meandering rivers and the development of floodplains, influencing rates of meander migration and the valley width over which migration takes place. In an effort to identify the controls on the alluviation of oxbow lakes by coarse bed material, this study examined the sedimentary records stored within oxbow lakes of the Sacramento River of California, USA, and found that the volume of gravel in storage correlated negatively with the diversion angle separating flow between the river channel and the entrance into each lake. A method was devised for estimating the original channel bathymetry of the studied lakes and for modelling the hydraulic and sediment-transport effects of the diversion angle within channels recently abandoned by meander cut-off. The diversion angle determines the width of a flow separation within the abandoned-channel entrance, reducing the discharge diverted from the river channel and thus limiting the ability of the abandoned channel to transport bed material. Aggradation rates are faster within entrances to abandoned channels with high diversion angles, resulting in the rapid isolation of lakes that store only a small volume of coarse-grained sediment. Aggradation rates are slower within channel entrances where diversion angles are low, resulting in the slow transitioning of such channels into oxbow lakes with a larger and more extensive accumulation of coarse-grained sediment. These findings compare well with observations in other natural settings and the mechanism which is described for the control of the diversion may explain why some oxbow lakes remain as open-water environments for centuries, whereas others are filled completely within decades of cut-off.
Incidents of chute cutoff are pervasive along many meandering rivers worldwide, but the process is seldom incorporated into theoretical analyses of planform evolution, partly due to the paucity of observations describing its physical controls. Here, we describe a mechanism of chute cutoff that may be prevalent along large meandering rivers with uniform fl oodplain topography. The mechanism occurs independently of sudden changes in conveyance capacity, such as those caused by natural dams, and instead, it is initiated during a fl ood by the incision of an embayment. The embayment is typically located almost a channel width upstream of the entrance to the meander that undergoes cutoff, and subsequent fl oods extend the embayment downstream until a chute is formed. Using sequences of historical aerial photos of the Sacramento River in California, USA, we found that embayments formed where channel curvature was greatest, or where the channel most tightly curved away from the downstream fl ow path. Embayments formed only within those portions of the fl oodplain that were lightly vegetated by grasses or crops. We develop a simple physical model that describes the environmental conditions that can lead to embayment formation. The model considers the role of fl oodplain vegetation in preventing chute incision and in part explains why chute cutoff is prevalent along some meandering rivers but not others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.