The study of Golgi-impregnated lizard brains has revealed a scarce but heterogeneous neuronal population in the outer plexiform layer of the medial cortex. Some of the neuronal types detected here resemble the neurons of the dentate molecular layer of the mammalian hippocampus. According to their morphology, five intrinsic neuronal types have been clearly identified: short axon aspinous bipolar neuron (type 1, or sarmentous neuron), short axon aspinous juxtasomatic neuron (type 2, or coral neuron), short axon sparsely spinous multipolar neuron (type 3, or stellate neuron), short axon sparsely spinous juxtasomatic multipolar neuron (type 4, or deep stellate neuron), and sparsely spinous juxtasomatic horizontal neuron (type 5, or couchant neuron). Most neuronal types were identified as gamma-aminobutyric acid (GABA) and parvalbumin immunoreactive, and are thus probably involved in medial cortex inhibition. Moreover, a small fraction of them displayed beta-endorphin immunoreactivity. The distribution of these neuronal types is not uniform in the laminae of the outer plexiform layer. Type 1 (sarmentous) and type 3 (stellate) neurons overlap the axonal field projection coming from the dorsal cortex and the thalamus, whereas types 4 (deep stellate) and 5 (couchant) neurons overlap ipsi- and contralateral dorsomedial projection fields as well as raphe serotoninergic and opioid immunoreactive axonal plexi. Thus, these neuronal types may be involved in the control of specific inputs to the medial cortex by presumably feed-forward inhibition; nevertheless, feed-back inhibition may also occur regarding type 4 (deep stellate) neurons that extend deep dendrites to the zinc-rich bouton field.
The medial cortex of lizards is a simple three-layered brain region displaying many characteristics that parallel the hippocampal fascia dentata of mammals. Its principal neurons form a morphologically diverse population, partly as a result of the prominent continuous growth of this nervous center. By using the classic Golgi impregnation method, we describe here the morphology of the principal neurons populating the medial cortex of Podarcis hispanica. These were projection neurons giving off descending axons. These axons displayed deep collateral branches provided with prominent axonal boutons, while the main axonal branch reached adjacent cortical areas and the bilateral septum. According to three main classification criteria, dendritic tree pattern, dendritic spine covering, and soma size, we have distinguished eight different types of projection neurons. Five of them, "heavily spiny granular" (monotufted, medium-sized), "heavily spiny bitufted" (large), "spiny bitufted" (medium-sized), "sparsely spiny bitufted" (small), and "superficial multipolar" (small), were found in the cell layer, whereas the three others lay outside this layer and were regarded as ectopic types ("outer plexiform ectopic bitufted," "inner plexiform ectopic bitufted", and "inner plexiform monotufted"). Additional secondary criteria, soma position and shape, allowed us to further classify bitufted neurons into three distinct subtypes each: "superficial-round," "intermediate-fusiform," and "deep-pyramidal." Moreover, a variety of small impregnated cells were observed; they probably represented newly generated immature neurons that had not yet completed their development. These cell types were compared with those reported previously in Golgi, immunocytochemical, and electron-microscopy studies, both in the reptilian medial cortex and in the mammalian dentate area. Presumably age-related changes and synaptic relationships of these projection cells in the medial cortex circuitry were analyzed.
In normal lizards, microglial cells populate the medial cortex (a zone homologous to the hippocampal fascia dentata), with a preferential distribution along the border between the granular cell layer and the plexiform layers. Intraperitoneal injection of the neurotoxin 3-acetylpyridine (3AP) induces a selective lesion in the medial cortex with a rapid degeneration of the granular layer and its zinc-enriched axonal projection. Within 6-8 weeks, the granular layer is, however, repopulated by a new set of neurons generated in the subjacent ependyma and the cell debris is removed. The aim of this study was to determine to what extent microglia were involved in the scavenging processes during the regeneration process. To this end we studied the brains of regenerating lizards at different times after 3AP lesion, visualising microglial cells by the nucleoside diphosphatase (NDPase) histochemical reaction. Surprisingly, we found that stained microglial cells disappeared 6-8 hours after 3AP injection and remained absent until 10-15 days after injection. One month postlesion an increased population of microglial cells was found scattered throughout all plexiform layers of the cortex. Thorough examination of semithin and ultrathin sections confirmed the absence of microglia in the medial cortex of recent lesioned animals but the presence of an exuberant population after 1 month postlesion. In the tissue, phagocytotic scavenging was carried out by radial ependymocytes, not by microglia.
The medial cortex of lizards is a three-layered brain region displaying cyto- and chemoarchitectonical, connectional, and ontogenetic characteristics that relate it to the hippocampal fascia dentata of mammals. Three interneuron types located in the cell layer and ten others in the inner plexiform layer (six in the juxtasomatic zone and four in the deep zone) are described in this study. The granuloid neurons, web-axon neurons, and deep-fusiform neurons lay within the cell layer. These neurons were scarce; they were probably gamma-aminobutyric acid (GABA)-, and parvalbumin-immunoreactive and presumably participated in feed forward as well as in feed back inhibition of the principal projection cells of the lizard medial cortex. In the juxtasomatic inner plexiform layer, the smooth vertical neurons, smooth horizontal neurons, small radial neurons, large radial neurons, pyramidal-like radial neurons, and spheroidal neurons were found. They were all probably GABA-, and parvalbumin-immunoreactive and were involved in feed forward inhibition of principal medial cortex cells. In the deep inner plexiform layer lay the giant-multipolar neurons, long-spined polymorphic neurons, periventricular neurons, and alveus-horizontal neurons. These neurons were probably GABA-immunoreactive and either neuropeptide- (somatostatin-neuropeptide Y) or parvalbumin-immunoreactive. They seemed to be involved in feed back or even occasionally in feed forward inhibition phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.