The transport of ions such as chloride ion through the concrete has been the subject of study, because the entrance of these, affects the useful life of the structure. The mechanism of ionic transport is described by the Nernst-Planck equation and to solve the problem numerical techniques such as the Finite Difference Method (MDF) or Finite Element (MEF) are used which require a meshing process and a higher cost Computational. In this work, relatively new methods such as the Radial Base Functions (FBR) method and the Fundamental Solution Method (MSF) were applied, which do not require a mesh to solve the ion transport problem.
The main cause of deterioration of concrete structures is due to the penetration of aggressive ions such as chloride ion. Concrete is considered as a material formed by several phases such as paste and aggregate; therefore, obtaining an analytical solution to the problem of ionic transport becomes very complex. In this work the mechanism of ionic transport of diffusion and migration of these ions is investigated using a mesh free method, which does not need to generate a mesh to obtain an approximate solution of the problem. The method of Radial Basis Functions with multiquadric core is used to simulate the transport of ions and obtain profiles of concentration of chlorides at different times of a concrete sample subject to an externally applied electrical potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.