The structure of eukaryotic genes is generally a combination of exons interrupted by intragenic non-coding DNA regions (introns) removed by RNA splicing to generate the mature mRNA. A fraction of genes, however, comprise a single coding exon with introns in their untranslated regions or are intronless genes (IGs), lacking introns entirely. The latter code for essential proteins involved in development, growth, and cell proliferation and their expression has been proposed to be highly specialized for neuro-specific functions and linked to cancer, neuropathies, and developmental disorders. The abundant presence of introns in eukaryotic genomes is pivotal for the precise control of gene expression. Notwithstanding, IGs exempting splicing events entail a higher transcriptional fidelity, making them even more valuable for regulatory roles. This work aimed to infer the functional role and evolutionary history of IGs centered on the mouse genome. IGs consist of a subgroup of genes with one exon including coding genes, non-coding genes, and pseudogenes, which conform approximately 6% of a total of 21,527 genes. To understand their prevalence, biological relevance, and evolution, we identified and studied 1,116 IG functional proteins validating their differential expression in transcriptomic data of embryonic mouse telencephalon. Our results showed that overall expression levels of IGs are lower than those of MEGs. However, strongly up-regulated IGs include transcription factors (TFs) such as the class 3 of POU (HMG Box), Neurog1, Olig1, and BHLHe22, BHLHe23, among other essential genes including the β-cluster of protocadherins. Most striking was the finding that IG-encoded BHLH TFs fit the criteria to be classified as microproteins. Finally, predicted protein orthologs in other six genomes confirmed high conservation of IGs associated with regulating neural processes and with chromatin organization and epigenetic regulation in Vertebrata. Moreover, this study highlights that IGs are essential modulators of regulatory processes, such as the Wnt signaling pathway and biological processes as pivotal as sensory organ developing at a transcriptional and post-translational level. Overall, our results suggest that IG proteins have specialized, prevalent, and unique biological roles and that functional divergence between IGs and MEGs is likely to be the result of specific evolutionary constraints.
Intronless genes (IGs) or single-exon genes lacking an intron are found across most Eukaryotes. Notably, IGs display a higher transcriptional fidelity as they are not regulated through alternative splicing, suggesting better predictability biomarkers and easier regulation as targets for therapy. Cancer is a complex disease that relies on progressive uncontrolled cell division linked with multiple dysfunctional biological processes. Tumor heterogeneity remains the most challenging feature in cancer diagnosis and treatment. Given the clinical relevance of IGs, we aim to identify their unique expression profiles and interactome, that may act as functional signatures across eight different cancers. We identified 940 protein-coding IGs in the human genome, of which about 35% were differentially expressed across the analyzed cancer datasets. Specifically, ∼78% of differentially expressed IGs were undergoing transcriptional reprogramming with elevated expression in tumor cells. Remarkably, in all the studied tumors, a highly conserved induction of a group of deacetylase-histones located in a region of chromosome 6 enriched in nucleosome and chromatin condensation processes. This study highlights that differentially expressed human intronless genes across cancer types are prevalent in epigenetic regulatory roles participating in specific PPI networks for ESCA, GBM, and LUAD tumors. We determine that IGs play a key role in the tumor phenotype at transcriptional and post-transcriptional levels, with important mechanisms such as interactomics rewiring.
Eukaryotic gene structure is a combination of exons generally interrupted by intragenic non-coding DNA regions termed introns removed by RNA splicing to generate the mature mRNA. Thus, eukaryotic genes can be either single exon genes (SEGs) or multiple exon genes (MEGs). Among SEGs, intronless genes (IGs) are a subgroup that additionally lacks introns at their UTRs, and code for proteins essentially involved in development, growth, and cell proliferation. Gene expression of IGs has been proposed to be highly specialized for neuro-specific functions and linked to cancer, neuropathies, and developmental disorders. The abundant presence of introns in eukaryotic genomes is pivotal for the precise control of gene expression. Notwithstanding, IGs exempting splicing events entail a higher transcriptional fidelity, making them even more valuable for regulatory roles. This work aimed to infer the functional role and evolutionary history of IGs using the mouse genome. Intronless protein-coding genes consist of a subgroup of ~6 % of a total of 21,527 genes with one exon. To understand the prevalence, biological relevance, and evolution, we identified and studied their 1,116 functional proteins. We validated differential expression in transcriptomics data of early embryo stages using mouse telencephalon tissue. Our results showed that expression levels of IGs are lower compared to MEGs. However, strongly upregulated IGs include transcription factors (TFs) such as the class 3 of POU (HMG Box), Neurog1, Olig1, and BHLHe22, BHLHe23, among other essential genes including the beta cluster of protocadherins. Most striking was the finding that IG-encoded BHLH TFs qualify the criteria to be referred to as microprotein candidates. Finally, predicted protein orthologs in other six genomes confirmed a high conservancy of IGs associated with regulating neurobiological processes and with chromatin organization and epigenetic regulation in Vertebrata. Moreover, this study highlights that IGs are essential modulators of regulatory processes, as Wnt signaling pathway and biological processes as pivotal as sensory organs developing at a transcriptional and post-translational level. Overall, our results suggest that IG proteins have specialized, prevalent, and unique biological roles and that functional divergence between IGs and MEGs is likely to be the result of specific evolutionary constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.