Background Trypanosoma cruzi, the etiologic agent of Chagas Disease, is a major vector borne health problem in Latin America and an emerging infectious disease in the United States.MethodsWe tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine (TcVac1) against experimental T. cruzi infection in a canine model. Dogs were immunized with antigen-encoding plasmids and cytokine adjuvants, and two weeks after the last immunization, challenged with T. cruzi trypomastigotes. We measured antibody responses by ELISA and haemagglutination assay, parasitemia and infectivity to triatomines by xenodiagnosis, and performed electrocardiography and histology to assess myocardial damage and tissue pathology.ResultsVaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG (IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs, as compared to non-vaccinated controls dogs, responded to T. cruzi with a rapid expansion of antibody response, moderately enhanced CD8+ T cell proliferation and IFN-γ production, and suppression of phagocytes’ activity evidenced by decreased myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized dogs did not control the myocardial parasite burden and electrocardiographic and histopatholgic cardiac alterations that are the hallmarks of acute Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a moderate decline in cardiac alterations determined by EKG and anatomo-/histo-pathological analysis while chronically-infected/non-vaccinated dogs continued to exhibit severe EKG alterations.ConclusionsOverall, these results demonstrated that TcVac1 provided a partial resistance to T. cruzi infection and Chagas disease, and provide an impetus to improve the vaccination strategy against Chagas disease.
Chagas disease, caused by Trypanosoma cruzi, is endemic in southern parts of the American continent. Herein, we have tested the protective efficacy of a DNA-prime/T. rangeli-boost (TcVac4) vaccine in a dog (Canis familiaris) model. Dogs were immunized with two-doses of DNA vaccine (pcDNA3.1 encoding TcG1, TcG2, and TcG4 antigens plus IL-12- and GM-CSF-encoding plasmids) followed by two doses of glutaraldehyde-inactivated T. rangeli epimastigotes (TrIE); and challenged with highly pathogenic T. cruzi (SylvioX10/4) isolate. Dogs given TrIE or empty pcDNA3.1 were used as controls. We monitored post-vaccination and post-challenge infection antibody response by an ELISA, parasitemia by blood analysis and xenodiagnosis, and heart function by electrocardiography. Post-mortem anatomic and pathologic evaluation of the heart was conducted. TcVac4 induced a strong IgG response (IgG2>IgG1) that was significantly expanded post-infection, and moved to a nearly balanced IgG2/IgG1 response in chronic phase. In comparison, dogs given TrIE or empty plasmid DNA only developed high IgG titers with IgG2 predominance in response to T. cruzi infection. Blood parasitemia, tissue parasite foci, parasite transmission to triatomines, electrocardiographic abnormalities were significantly lower in TcVac4-vaccinated dogs than was observed in dogs given TrIE or empty plasmid DNA only. Macroscopic and microscopic alterations, the hallmarks of chronic Chagas disease, were significantly decreased in the myocardium of TcVac4-vaccinated dogs. We conclude that TcVac4 induced immunity was beneficial in providing resistance to T. cruzi infection, evidenced by control of chronic pathology of the heart and preservation of cardiac function in dogs. Additionally, TcVac4 vaccination decreased the transmission of parasites from vaccinated/infected animals to triatomines.
During Trypanosoma cruzi infection, oxidative stress is considered a contributing factor for dilated cardiomyopathy development. In this study, the effects of astaxanthin (ASTX) were evaluated as an alternative drug treatment for Chagas disease in a mouse model during the acute infection phase, given its anti-inflammatory, immunomodulating, and anti-oxidative properties. ASTX was tested in vitro in parasites grown axenically and in co-culture with Vero cells. In vivo tests were performed in BALB/c mice (4–6 weeks old) infected with Trypanosoma cruzi and supplemented with ASTX (10 mg/kg/day) and/or nifurtimox (NFMX; 100 mg/kg/day). Results show that ASTX has some detrimental effects on axenically cultured parasites, but not when cultured with mammalian cell monolayers. In vivo, ASTX did not have any therapeutic value against acute Trypanosoma cruzi infection, used either alone or in combination with NFMX. Infected animals treated with NFMX or ASTX/NFMX survived the experimental period (60 days), while infected animals treated only with ASTX died before day 30 post-infection. ASTX did not show any effect on the control of parasitemia; however, it was associated with an increment in focal heart lymphoplasmacytic infiltration, a reduced number of amastigote nests in cardiac tissue, and less hyperplasic spleen follicles when compared to control groups. Unexpectedly, ASTX showed a negative effect in infected animals co-treated with NFMX. An increment in parasitemia duration was observed, possibly due to ASTX blocking of free radicals, an anti-parasitic mechanism of NFMX. In conclusion, astaxanthin is not recommended during the acute phase of Chagas disease, either alone or in combination with nifurtimox.
The development of vaccines against Chagas disease during the past years have provided a partial control of Trypanosoma cruzi infection. GPI-anchored T. cruzi genes are conserved in all T. cruzi life cycle stages and were tested as vaccine candidates in previous studies, they elicited humoral and cellular mediated immune responses and controlled parasitemia in mice. Herein we tested multi-component DNA-prime/DNA-boost vaccine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.