Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
Bio-oils are precursors
for biofuels but are highly corrosive necessitating
further upgrading. Furthermore, bio-oil samples are highly complex
and represent a broad range of chemistries. They are complex mixtures
not simply because of the large number of poly-oxygenated compounds
but because each composition can comprise many isomers with multiple
functional groups. The use of hyphenated ultrahigh-resolution mass
spectrometry affords the ability to separate isomeric species of complex
mixtures. Here, we present for the first time, the use of this powerful
analytical technique combined with chemical reactivity to gain greater
insights into the reactivity of the individual isomeric species of
bio-oils. A pyrolysis bio-oils and its esterified bio-oil were analyzed
using gas chromatography coupled to Fourier transform ion cyclotron
resonance mass spectrometry, and in-house software (KairosMS) was
used for fast comparison of the hyphenated data sets. The data revealed
a total of 10,368 isomers in the pyrolysis bio-oil and an increase
to 18,827 isomers after esterification conditions. Furthermore, the
comparison of the isomeric distribution before and after esterification
provide new light on the reactivities within these complex mixtures;
these reactivities would be expected to correspond with carboxylic
acid, aldehyde, and ketone functional groups. Using this approach,
it was possible to reveal the increased chemical complexity of bio-oils
after upgrading and target detection of valuable compounds within
the bio-oils. The combination of chemical reactions alongside with
in-depth molecular characterization opens a new window for the understanding
of the chemistry and reactivity of complex mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.