Abstract. We study the notion of strong equivalence between two Answer Set programs and we show how some particular cases of testing strong equivalence between programs can be reduced to verify if a formula is a theorem in intuitionistic or classical logic. We present some program transformations for disjunctive programs, which can be used to simplify the structure of programs and reduce their size. These transformations are shown to be of interest for both computational and theoretical reasons. Then we propose how to generalize such transformations to deal with free programs (which allow the use of default negation in the head of clauses). We also present a linear time transformation that can reduce an augmented logic program (which allows nested expressions in both the head and body of clauses) to a program consisting only of standard disjunctive clauses and constraints.
We present some applications of intermediate logics in the field of Answer Set Programming (ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic and other intermediate logics is given. Some equivalence notions and their applications are discussed. Some results on intermediate logics are shown, and applied later to prove properties of answer sets. A characterization of answer sets for logic programs with nested expressions is provided in terms of intuitionistic provability, generalizing a recent result given by Pearce.It is known that the answer set semantics for logic programs with nested expressions may select non-minimal models. Minimal models can be very important in some applications, therefore we studied them; in particular we obtain a characterization, in terms of intuitionistic logic, of answer sets which are also minimal models. We show that the logic G3 characterizes the notion of strong equivalence between programs under the semantic induced by these models. Finally we discuss possible applications and consequences of our results. They clearly state interesting links between ASP and intermediate logics, which might bring research in these two areas together.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.