Abstract:We study an algorithm which has been proposed in [2,7] to solve high-dimensional partial differential equations. The idea is to represent the solution as a sum of tensor products and to compute iteratively the terms of this sum. This algorithm is related to the so-called greedy algorithm introduced by Temlyakov in [10]. In this paper, we investigate the application of the greedy algorithm in finance and more precisely to the option pricing problem. We approximate the solution to the Black-Scholes equation and we propose a variance reduction method. In numerical experiments, we obtain results for up to 10 underlyings. Besides, the proposed variance reduction method permits an important reduction of the variance in comparison with a classical Monte Carlo method.
This paper studies the multilevel Monte-Carlo estimator for the expectation of a maximum of conditional expectations. This problem arises naturally when considering many stress tests and appears in the calculation of the interest rate module of the standard formula for the SCR. We obtain theoretical convergence results that complements the recent work of Giles and Goda [14] and gives some additional tractability through a parameter that somehow describes regularity properties around the maximum. We then apply the MLMC estimator to the calculation of the SCR at future dates with the standard formula for an ALM savings business on life insurance. We compare it with estimators obtained with Least Square Monte-Carlo or Neural Networks. We find that the MLMC estimator is computationally more efficient and has the main advantage to avoid regression issues, which is particularly significant in the context of projection of a balance sheet by an insurer due to the path dependency. Last, we discuss the potentiality of this numerical method and analyse in particular the effect of the portfolio allocation on the SCR at future dates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.