Elevated arterial pressure is a major risk factor for progression to ESRD in diabetic nephropathy. However, the component of arterial pressure and level of BP control for optimal renal outcomes are disputed. Data from 1590 hypertensive patients with type 2 diabetes in the Irbesartan Diabetic Nephropathy Trial (IDNT), a randomized, double-blind, placebo-controlled trial performed in 209 clinics worldwide, were examined, and the effects of baseline and mean follow-up systolic BP (SBP) and diastolic BP and the interaction of assigned study medications (irbesartan, amlodipine, and placebo) on progressive renal failure and all-cause mortality were assessed. Other antihypertensive agents were added to achieve predetermined BP goals. Entry criteria included elevated baseline serum creatinine concentration up to 266 mol/L (3.0 mg/dl) and urine protein excretion >900 mg/d. Baseline BP averaged 159/87 ؎ 20/11 mmHg. Median patient follow-up was 2.6 yr. Follow-up achieved SBP most strongly predicted renal outcomes. SBP >149 mmHg was associated with a 2.2-fold increase in the risk for doubling serum creatinine or ESRD compared with SBP <134 mmHg. Progressive lowering of SBP to 120 mmHg was associated with improved renal and patient survival, an effect independent of baseline renal function. Below this threshold, all-cause mortality increased. An additional renoprotective effect of irbesartan, independent of achieved SBP, was observed down to 120 mmHg. There was no correlation between diastolic BP and renal outcomes. We recommend a SBP target between 120 and 130 mmHg, in conjunction with blockade of the renin-angiotensin system, in patients with type 2 diabetic nephropathy.
Caspases are the main executioners of apoptosis as well as interleukin (IL)-1beta and IL-18 conversion to active forms. They are activated after acute kidney injuries. In this study, we evaluated the importance of the caspase family in the pathogenesis and recovery of glycerol-induced acute renal failure in rats (Gly-ARF). Rats were treated with pan-caspase or selective caspase 1 and 3 inhibitors at the moment we injected glycerol. Renal function, renal histology (HE), transferase-mediated deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling staining for apoptosis, leukocytes infiltration (immunohistochemistry), renal expression of IL-1beta and IL-18 (immunohistochemistry and Western blot), tubular regeneration (5-bromo-2'-deoxyuridine (BrdU) incorporation), and P27(Kip) expression (Western blot) were evaluated at appropriate times. All inhibitors reduced the renal function impairment. Pan-caspase and caspase-3 inhibitors reduced cellular death (necrosis and apoptosis) 24 h after Gly-ARF. All caspases inhibitors reduced macrophages infiltration. The expression of total IL-1beta was enhanced in Gly-ARF, but the active IL-1beta and IL-18 forms were abolished in pan-caspase treated rats. Caspase-1 inhibitor attenuated Gly-ARF but not tubular injury suggesting glomerular hemodynamic improvement. There was striking regenerative response 48 h after Gly-ARF characterized by enhanced BrdU incorporation and reduced expression of p27(Kip). This response was not blunted by caspases inhibition. Our findings demonstrate that caspases participate in important pathogenic mechanisms in Gly-ARF such as inflammation, apoptosis, vasoconstriction, and tubular necrosis. The early inhibition of caspases attenuates these mechanisms and reduces the renal function impairment in Gly-ARF.
High glucose upregulates autophagy but accumulates p62/SQTSM1 cargo due to lysosomal dysfunction, leading to massive VEGF release and cell death of rMCs. Lysosomal impairment and autophagic dysfunction are early events present in the pathogenesis of diabetic retinopathy (DR). This might be valuable for developing a novel therapeutic strategy to treat DR.
OBJECTIVE-Diabetic retinopathy displays the features of a neurodegenerative disease. Oxidative stress is involved in the pathogenesis of diabetic retinopathy. This investigation sought to determine whether hypertension exacerbates the oxidative stress, neurodegeneration, and mitochondrial dysfunction that exists in diabetic retinopathy and whether these changes could be minimized by the angiotensin II type 1 (AT 1 ) receptor blocker (ARB) losartan.RESEARCH DESIGN AND METHODS-Diabetes was induced in spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats. The diabetic SHRs were assigned to receive or not receive losartan. RESULTS-The level of apoptosis in the retina was higher in diabetic WKY rats than in the control group, and higher levels were found in diabetic SHRs. The apoptotic cells expressed neural and glial markers. The retinal glial reaction was more evident in diabetic WKY rats and was markedly accentuated in diabetic SHRs. Superoxide production in retinal tissue increased in diabetic WKY rats, and a greater increase occurred in diabetic SHRs. Glutathione levels decreased only in diabetic SHRs. As a consequence, the levels of nitrotyrosine and 8-hydroxy 2Ј-deoxyguanosine, markers of oxidative stress, were elevated in diabetic groups, mainly in diabetic SHRs. Mitochondrial integrity was dramatically affected in the diabetic groups. The ARB treatment reestablished all of the above-mentioned parameters.CONCLUSIONS-These findings suggest that concomitance of hypertension and diabetes exacerbates oxidative stress, neurodegeneration, and mitochondrial dysfunction in the retinal cells. These data provide the first evidence of AT 1 blockage as a neuroprotective treatment of diabetic retinopathy by reestablishing oxidative redox and the mitochondrial function. Diabetes
GT protected the retina against glutamate toxicity via an antioxidant mechanism. These findings reveal a novel mechanism by which GT protects the retina against neurodegeneration in disorders such as diabetic retinopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.