In rat neostriatal neurons, D1 dopamine receptors regulate the activity of cyclic AMP-dependent protein kinase (PKA) and protein phosphatase 1 (PP1). The influence of these signaling elements on high voltage-activated (HVA) calcium currents was studied using whole-cell voltage-clamp techniques. The application of D1 agonists or cyclic AMP analogs reversibly reduced N- and P-type Ca2+ currents. Inhibition of PKA antagonized this modulation, as did inhibition of PP1, suggesting that the D1 effect was mediated by a PKA enhancement of PP1 activity directed toward Ca2+ channels. In a subset of neurons, D1 receptor-mediated activation of PKA enhanced L-type currents. The differential regulation of HVA currents by the D1 pathway helps to explain the diversity of effects this pathway has on synaptic integration and plasticity in medium spiny neurons.
Correlated activity in cortico-basal ganglia circuits plays a key role in the encoding of movement, associative learning and procedural memory. How correlated activity is assembled by striatal microcircuits is not understood. Calcium imaging of striatal neuronal populations, with single-cell resolution, reveals sporadic and asynchronous activity under control conditions. However, N-methyl-d-aspartate (NMDA) application induces bistability and correlated activity in striatal neurons. Widespread neurons within the field of observation present burst firing. Sets of neurons exhibit episodes of recurrent and synchronized bursting. Dimensionality reduction of network dynamics reveals functional states defined by cell assemblies that alternate their activity and display spatiotemporal pattern generation. Recurrent synchronous activity travels from one cell assembly to the other often returning to the original assembly; suggesting a robust structure. An initial search into the factors that sustain correlated activity of neuronal assemblies showed a critical dependence on both intrinsic and synaptic mechanisms: blockage of fast glutamatergic transmission annihilates all correlated firing, whereas blockage of GABAergic transmission locked the network into a single dominant state that eliminates assembly diversity. Reduction of L-type Ca2+-current restrains synchronization. Each cell assembly comprised different cells, but a small set of neurons was shared by different assemblies. A great proportion of the shared neurons was local interneurons with pacemaking properties. The network dynamics set into action by NMDA in the striatal network may reveal important properties of striatal microcircuits under normal and pathological conditions.
In spite of the recognition that striatal D(2) receptors are critical determinants in a variety of psychomotor disorders, the cellular mechanisms by which these receptors shape neuronal activity have remained a mystery. The studies presented here reveal that D(2) receptor stimulation in enkephalin-expressing medium spiny neurons suppresses transmembrane Ca(2+) currents through L-type Ca(2+) channels, resulting in diminished excitability. This modulation is mediated by G(beta)(gamma) activation of phospholipase C, mobilization of intracellular Ca(2+) stores, and activation of the calcium-dependent phosphatase calcineurin. In addition to providing a unifying mechanism to explain the apparently divergent effects of D(2) receptors in striatal medium spiny neurons, this novel signaling linkage provides a foundation for understanding how this pivotal receptor shapes striatal excitability and gene expression.
Most in vitro studies of D 1 dopaminergic modulation of excitability in neostriatal medium spiny neurons have revealed inhibitory effects. Yet studies made in more intact preparations have shown that D 1 receptors can enhance or inhibit the responses to excitatory stimuli. One explanation for these differences is that the effects of D 1 receptors on excitability are dependent on changes in the membrane potential occurring in response to cortical inputs that are seen only in intact preparations. To test this hypothesis, we obtained voltage recordings from medium spiny neurons in slices and examined the impact of D 1 receptor stimulation at depolarized and hyperpolarized membrane potentials. As previously reported, evoked discharge was inhibited by D 1 agonists when holding at negative membrane potentials (approximately Ϫ80 mV ). However, at more depolarized potentials (approximately Ϫ55 mV ), D 1 agonists enhanced evoked activity. At these potentials, D 1 agonists or cAMP analogs prolonged or induced slow subthreshold depolarizations and increased the duration of barium-or TEAinduced Ca 2ϩ -dependent action potentials. Both effects were blocked by L-type Ca 2ϩ channel antagonists (nicardipine, calciseptine) and were occluded by the L-type channel agonist BayK 8644 -arguing that the D 1 receptor-mediated effects on evoked activity at depolarized membrane potential were mediated by enhancement of L-type Ca 2ϩ currents. These results reconcile previous in vitro and in vivo studies by showing that D 1 dopamine receptor activation can either inhibit or enhance evoked activity, depending on the level of membrane depolarization.
In a rat corticostriatal slice, brief, suprathreshold, repetitive cortical stimulation evoked long‐lasting plateau potentials in neostriatal neurons. Plateau potentials were often followed by spontaneous voltage transitions between two preferred membrane potentials. While the induction of plateau potentials was disrupted by non‐NMDA and NMDA glutamate receptor antagonists, the maintenance of spontaneous voltage transitions was only blocked by NMDA receptor and L‐type Ca2+ channel antagonists. The frequency and duration of depolarized events, resembling up‐states described in vivo, were increased by NMDA and L‐type Ca2+ channel agonists as well as by GABAA receptor and K+ channel antagonists. NMDA created a region of negative slope conductance and a positive slope crossing indicative of membrane bistability in the current‐voltage relationship. NMDA‐induced bistability was partially blocked by L‐type Ca2+ channel antagonists. Although evoked by synaptic stimulation, plateau potentials and voltage oscillations could not be evoked by somatic current injection – suggesting a dendritic origin. These data show that NMDA and L‐type Ca2+ conductances of spiny neurons are capable of rendering them bistable. This may help to support prolonged depolarizations and voltage oscillations under certain conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.