Gene editing constitutes a novel approach for precisely correcting disease-causing gene mutations. Frameshift mutations in COL7A1 causing recessive dystrophic epidermolysis bullosa are amenable to open reading frame restoration by non-homologous end joining repair-based approaches. Efficient targeted deletion of faulty COL7A1 exons in polyclonal patient keratinocytes would enable the translation of this therapeutic strategy to the clinic. In this study, using a dual single-guide RNA (sgRNA)-guided Cas9 nuclease delivered as a ribonucleoprotein complex through electroporation, we have achieved very efficient targeted deletion of COL7A1 exon 80 in recessive dystrophic epidermolysis bullosa (RDEB) patient keratinocytes carrying a highly prevalent frameshift mutation. This
ex vivo
non-viral approach rendered a large proportion of corrected cells producing a functional collagen VII variant. The effective targeting of the epidermal stem cell population enabled long-term regeneration of a properly adhesive skin upon grafting onto immunodeficient mice. A safety assessment by next-generation sequencing (NGS) analysis of potential off-target sites did not reveal any unintended nuclease activity. Our strategy could potentially be extended to a large number of COL7A1 mutation-bearing exons within the long collagenous domain of this gene, opening the way to precision medicine for RDEB.
Recessive dystrophic epidermolysis bullosa is a severe skin fragility disease caused by loss of functional type VII collagen at the dermal-epidermal junction. A frameshift mutation in exon 80 of COL7A1 gene, c.6527insC, is highly prevalent in the Spanish patient population. We have implemented gene-editing strategies for COL7A1 frame restoration by NHEJ-induced indels in epidermal stem cells from patients carrying this mutation. TALEN nucleases designed to cut within the COL7A1 exon 80 sequence were delivered to primary patient keratinocyte cultures by non-integrating viral vectors. After genotyping a large collection of vector-transduced patient keratinocyte clones with high proliferative potential, we identified a significant percentage of clones with COL7A1 reading frame recovery and Collagen VII protein expression. Skin equivalents generated with cells from a clone lacking exon 80 entirely were able to regenerate phenotypically normal human skin upon their grafting onto immunodeficient mice. These patient-derived human skin grafts showed Collagen VII deposition at the basement membrane zone, formation of anchoring fibrils, and structural integrity when analyzed 12 weeks after grafting. Our data provide a proof-of-principle for recessive dystrophic epidermolysis bullosa treatment through ex vivo gene editing based on removal of pathogenic mutation-containing, functionally expendable COL7A1 exons in patient epidermal stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.