Context: In recent years, the recognition of human activities has become an area of constant exploration in different fields. This article presents a literature review focused on the different types of human activities and information acquisition devices for the recognition of activities. It also delves into elderly fall detection via computer vision using feature extraction methods and artificial intelligence techniques.
Methodology: This manuscript was elaborated following the criteria of the document review and analysis methodology (RAD), dividing the research process into the heuristics and hermeneutics of the information sources. Finally, 102 research works were referenced, which made it possible to provide information on current state of the recognition of human activities.
Results: The analysis of the proposed techniques for the recognition of human activities shows the importance of efficient fall detection. Although it is true that, at present, positive results are obtained with the techniques described in this article, their study environments are controlled, which does not contribute to the real advancement of research.
Conclusions: It would be of great impact to present the results of studies in environments similar to reality, which is why it is essential to focus research on the development of databases with real falls of adults or in uncontrolled environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.