The purpose of this study was to analyze the differences in the technical pattern of the snatch in elite junior weightlifters of different weight categories. The sample was a group of 33 men weightlifters from different weight categories. The comparative study included 2 groups, taking into account weight categories. Group A included 17 weightlifters from the lightest categories, 56 and 62 kg; group B included 16 weightlifters from the heaviest categories, 85 and 105 kg. Three-dimensional photogrammetry technique was utilized. Regarding group differences, we can conclude that lifters belonging to heavier categories are more efficient, as they manage to have longer barbell propulsion trajectories, which allows them to exert actions on the barbell for a longer period, especially in the initial lifting phase. They attain greater barbell vertical velocity (p = 0.029), a longer vertical bar trajectory normalized on first pull (p = 0.011), and a greater, although limited, bar height loss on the catch (p = 0.008). Besides, intergroup differences evidence that heavier category lifters observe a different temporal organization of the movement based on a longer first pull (p = 0.000), a shorter transition (p = 0.030), and a longer turnover (p = 0.049). No significant differences were found in the analyzed angular parameters during the first and second pull. We believe the intergroup differences found not to be determining enough to consider a technical model adapted to the characteristics of each body weight category. This confirms that a successful lift is multifactor based and individual dependent. Given its transcendence, this evidence should be taken into account in the technical training of young lifters.
Pre-tensed and conventional starts that exert, respectively, large and small forces against the starting blocks in the “set” position (0.186 vs. 0.113 N per newton of body weight) were analyzed. The starts were videotaped, and the horizontal forces exerted on feet and hands were obtained from separate force plates. In the pre-tensed start, the legs received larger forward impulses early in the acceleration (0.18 vs. 0.15 N·s per kilogram of mass in the first 0.05 s), but the hands received larger backward impulses (–0.08 vs. –0.04 N·s·kg–1). At the end of the acceleration phase, there was no significant difference in horizontal velocity between the two types of start and only trivial differences in the center of mass positions. The results did not show a clear performance change when the feet were pressed hard against the blocks while waiting for the gun.
The purpose of the present study was to identify the relationships among selected kinematic variables that affect the take-off phase and performance in elite jumpers. The jump distance was found to be related to: I) the athlete's approach speed before the instant of touch down; and ii) the exchange in spatial velocity components at take-off, which results in a gain in maximum vertical velocity of the centre of mass (CM), favoured by the use of an optimum touch-down angle of the take-off leg, an active landing of the foot at touch-down, and a motion of the take-off leg during the compression phase that helps to manage the loss of horizontal velocity. Nonetheless, the results show that an adequate velocity transformation requires an adaptive technical model to help jumpers to build an efficient individual technical pattern.
This study seeks to discover whether handball goalkeepers employ a general anticipatory strategy when facing long distance throws and the effect of uncertainty on these strategies. Seven goalkeepers and four throwers took part. We used a force platform to analyse the goalkeeper's movements on the basis of reaction forces and two video cameras synchronised at 500 Hz to film the throw using 3D video techniques. The goalkeepers initiated their movement towards the side of the throw 193 ± 67 ms before the release of the ball and when the uncertainty was reduced the time increased to 349 ± 71 ms. The kinematics analysis of their centre of mass indicated that there was an anticipatory strategy of movement with certain modifications when there was greater uncertainty. All the average scores referring to velocity and lateral movement of the goalkeeper's centre of mass are significantly greater than those recorded for the experimental situation with bigger uncertainty. The methodology used has enabled us to tackle the study of anticipation from an analysis of the movement used by goalkeepers to save the ball.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.