J. Neurochem. (2011) 116, 105–121. Abstract This study examines the Cav1 isoforms expressed in mouse chromaffin cells and compares their biophysical properties and roles played in cell excitability and exocytosis. Using immunocytochemical and electrophysiological techniques in mice lacking the Cav1.3α1 subunit (Cav1.3−/−) or the high sensitivity of Cav1.2α1 subunits to dihydropyridines, Cav1.2 and Cav1.3 channels were identified as the only Cav1 channel subtypes expressed in mouse chromaffin cells. Cav1.3 channels were activated at more negative membrane potentials and inactivated more slowly than Cav1.2 channels. Cav1 channels, mainly Cav1.2, control cell excitability by functional coupling to BK channels, revealed by nifedipine blockade of BK channels in wild type (WT) and Cav1.3−/− cells (53% and 35%, respectively), and by the identical change in the shape of the spontaneous action potentials elicited by the dihydropyridine in both strains of mice. Cav1.2 channels also play a major role in spontaneous action potential firing, supported by the following evidence: (i) a similar percentage of WT and Cav1.3−/− cells fired spontaneous action potentials; (ii) firing frequency did not vary between WT and Cav1.3−/− cells; (iii) mostly Cav1.2 channels contributed to the inward current preceding the action potential threshold; and (iv) in the presence of tetrodotoxin, WT or Cav1.3−/− cells exhibited spontaneous oscillatory activity, which was fully abolished by nifedipine perfusion. Finally, Cav1.2 and Cav1.3 channels were essential for controlling the exocytotic process at potentials above and below −10 mV, respectively. Our data reveal the key yet differential roles of Cav1.2 and Cav1.3 channels in mediating action potential firing and exocytotic events in the neuroendocrine chromaffin cell.
High catecolamine plasma levels because of sympathetic nervous system over-activity contribute to cirrhosis progression. The aim of this study was to investigate whether chromaffin cells of the adrenal gland might potentiate the deleterious effect exerted by this over-activity. Electrophysiological patch-clamp and amperometric experiments with carbon-fibre electrodes were conducted in single chromaffin cells of control and CCl 4induced cirrhotic rats. The spontaneous action potential firing frequency was increased in chromaffin cells of cirrhotic rats with respect to control rats. The exocytosis evoked by that firing was also increased. However, exocytosis elicited by ACh did not vary between control and cirrhotic rats. Exocytosis triggered by depolarizing pulses was also unchanged. Amperometric recordings confirmed the lack of increased catecholamine charge released in cirrhosis after ACh or depolarization stimuli. However, the amperometric spikes exhibited faster kinetics of release. The overall Ca 2+ entry through voltage-dependent Ca 2+ channels (VDCC), or in particular through Cav1 channels, did not vary between chromaffin cells of control and cirrhotic rats. The inhibition of VDCC by methionine-enkephaline or ATP was not either altered, but it was increased by adrenaline in cells of cirrhotic rats. When a cocktail composed by the three neurotransmitters was tested in order to approach a situation closer to the physiological condition, the inhibition of VDCC was similar between both types of cells. In summary, chromaffin cells of the adrenal gland might contribute to exacerbate the sympathetic nervous system over-activity in cirrhosis because of an increased exocytosis elicited by an enhanced spontaneous electrical activity.
The present study was planned to investigate the action of pregabalin on voltage-dependent Ca 2ϩ channels (VDCCs) and novel targets (fusion pore formed between the secretory vesicle and the plasma membrane, exocytotic machinery, and mitochondria) that would further explain its inhibitory action on neurotransmitter release. Electrophysiological recordings in the perforated-patch configuration of the patch-clamp technique revealed that pregabalin inhibits by 33.4 Ϯ 2.4 and 39 Ϯ 4%, respectively, the Ca 2ϩ current charge density and exocytosis evoked by depolarizing pulses in mouse chromaffin cells. Approximately half of the inhibitory action of pregabalin was rescued by L-isoleucine, showing the involvement of ␣2␦-dependent and -independent mechanisms. Ca 2ϩ channel blockers were used to inhibit Cav1, Cav2.1, and Cav2.2 channels in mouse chromaffin cells, which were unselectively blocked by the drug. Similar values of Ca 2ϩ current charge blockade were obtained when pregabalin was tested in human or bovine chromaffin cells, which express very different percentages of VDCC types with respect to mouse chromaffin cells. These results demonstrate that the inhibitory action of pregabalin on VDCCs and exocytosis does not depend on ␣1 Ca 2ϩ channel subunit types. Carbon fiber amperometric recordings of digitonin-permeabilized cells showed that neither the fusion pore nor the exocytotic machinery were targeted by pregabalin. Mitochondrial Ca 2ϩ measurements performed with mitochondrial ratiometric pericam demonstrated that Ca 2ϩ uptake or release from mitochondria were not affected by the drug. The selectivity of action of pregabalin might explain its safety, good tolerability, and reduced adverse effects. In addition, the inhibition of the exocytotic process in chromaffin cells might have relevant clinical consequences.
Chromaffin cells have been widely used to study neurosecretion since they exhibit similar calcium dependence of several exocytotic steps as synaptic terminals do, but having the enormous advantage of being neither as small or fast as neurons, nor as slow as endocrine cells. In the present study, secretion associated to experimental measurements of the exocytotic dynamics in human chromaffin cells of the adrenal gland was simulated by using a model that combines stochastic and deterministic approaches for short and longer depolarizing pulses, respectively. Experimental data were recorded from human chromaffin cells, obtained from healthy organ donors, using the perforated patch configuration of the patch-clamp technique. We have found that in human chromaffin cells, secretion would be mainly managed by small pools of non-equally fusion competent vesicles, slowly refilled over time. Fast secretion evoked by brief pulses can be predicted only when 75% of one of these pools (the "ready releasable pool" of vesicles, abbreviated as RRP) are co-localized to Ca²⁺ channels, indicating an immediately releasable pool in the range reported for isolated cells of bovine and rat (Álvarez and Marengo, J Neurochem 116:155-163, 2011). The need for spatial correlation and close proximity of vesicles to Ca²⁺ channels suggests that in human chromaffin cells there is a tight control of those releasable vesicles available for fast secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.